Skip to main content
Log in

Evaluation of a mixed geometry model for the characterization of activated carbons

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The predictions of the Pure Slit Geometry Model (PSGM) and the Mixed Geometry Model (MGM) for the characterization of activated carbons (AC) are compared and tested against the behavior of the textural properties of series of AC obtained from coconut shells by varying the concentration of the chemical activation agent over a wide range. Through the analysis of results it is concluded that the MGM can be regarded as reliable as the PSGM, with an apparently more consistent description of the behavior as a function of the degree of chemical activation and superior consistency between the results for different adsorbates, like N2 and CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azevedo, D.C.S., Cavalcante, C.L. Jr., López, R.H., Torres, A.E.B., Toso, J.P., Zgrablich, G.: Mixed geometry characterization of activated carbons PSD. In: Kaskel, S., Llewellyn, P., Rodriguez-Reinoso, F., Seaton, N.A. (eds.) Proceedings of the 8th International Symposium on Characterization of Porous Solids VIII, p. 211. The Royal Society of Chemistry, Cambridge (2009), ISBN:978-1-84755-904-3

    Google Scholar 

  • Azevedo, D.C.S., Rios, R.B., López, R.H., Torres, A.E.B., Cavalcante, C.L. Jr., Toso, J.P., Zgrablich, G.: Characterization of PSD of activated carbons by using slit and triangular pore geometries. Appl. Surf. Sci. 256, 5191–5197 (2010)

    Article  CAS  Google Scholar 

  • Bastos Neto, M., Canabrava, D.V., Torres, A.E.B., Rodríguez-Castellón, E., Jiménez-López, A., Azevedo, D.C.S., Cavalcante, C.L. Jr.: Effects of textural and surface characteristics of microporous activated carbons on the methane adsorption capacity at high pressures. Appl. Surf. Sci. 253, 5721–5725 (2007)

    Article  CAS  Google Scholar 

  • Birkett, G.R., Do, D.D.: Correct procedures for the calculation of heats of adsorption for heterogeneous adsorbents from molecular simulation. Langmuir 22, 9976–9981 (2006)

    Article  CAS  Google Scholar 

  • Bojan, M.J., Steele, W.A.: Computer simulation in pores with rectangular cross-sections. Carbon 36, 1417–1423 (1998)

    Article  CAS  Google Scholar 

  • Davies, G.M., Seaton, N.A., Vassiliadis, V.S.: Calculation of pore size distribution of activated carbons from adsorption isotherms. Langmuir 15, 8235–8245 (1999)

    Article  CAS  Google Scholar 

  • Denoyel, R., Fernandez-Colinas, J., Grillet, Y., Rouquerol, J.: Assessment of the surface area and microporosity of activated charcoals from immersion calorimetry and nitrogen adsorption data. Langmuir 9, 515–518 (1993)

    Article  CAS  Google Scholar 

  • Dubinin, M.M.: In: Danielli, J.F., Rosenberg, M.D., Cadenhead, D. (eds.) Progress in Surface and Membrane Science, vol. 9, pp. 1–70. Academic Press, New York (1975)

    Google Scholar 

  • Fei, Y.Q., Yamada, Y., Meada, T., Shiraishi, M., Derbyshire, F.: High resolution TEM/digital image analysis of activated mesophases microbeads. In: Proc. CARBON’94 Conference, p. 202. Granada (1994)

    Google Scholar 

  • Fernández-Colinas, J., Denoyel, R., Grillet, Y., Rouquerol, F., Rouquerol, J.: Significance of N2 and Ar adsorption data for following the pore structure modifications of a charcoal during activation. Langmuir 5, 1205–1210 (1989)

    Article  Google Scholar 

  • Huang, Z.H., Kang, F., Huang, W.L., Yang, J.B., Liang, K.M., Cui, M.L., Cheng, Z.: Pore structure and fractal characteristics of activated carbon fibers characterized by using HRTEM. J. Colloid Interface Sci. 249, 453 (2002)

    Article  CAS  Google Scholar 

  • Jagiello, J., Thommes, M.: Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon 42, 1225–1229 (2004)

    Article  Google Scholar 

  • Jagiello, J., Olivier, J.P.: A simple two-dimensional NLDFT model of gas adsorption in finite carbon pores. Application to pore structure analysis. J. Phys. Chem. C 113, 19382–19385 (2009)

    Article  CAS  Google Scholar 

  • Lastoskie, C., Gubbins, K.E., Quirke, N.: Pore size distribution analysis of microporous carbons: A density functional theory approach. J. Phys. Chem. 97, 4786–4796 (1993)

    Article  CAS  Google Scholar 

  • Lee, J., Kim, J., Hyeon, T.: Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18, 2073–2094 (2006)

    Article  CAS  Google Scholar 

  • Lucena, S.M.P., Paiva, C.A.S., Silvino, P.F.G., Azevedo, D.C.S., Cavalcante, C.L. Jr: The effect of heterogeneity in the randomly etched graphite model for carbon pore size characterization. Carbon 48, 2554–2565 (2010)

    Article  CAS  Google Scholar 

  • Marsh, H., Rodríguez-Reinoso, F.: Activated Carbon. Elsevier, London (2006)

    Google Scholar 

  • Molina-Sabio, M., Rodríguez-Reinoso, F., Valladares, D., Zgrablich, G.: In: Rouquerol, J., Rodríguez-Reinoso, F., Sing, K.S.W., Unger, K.K. (eds.) Characterization of Porous Solids III, Studies in Surface Science and Catalysis. vol. 87, p. 573. Elsevier, Amsterdam (1994)

    Google Scholar 

  • Neimark, A.V., Lin, Y., Ravikovitch, P.I., Thommes, M.: Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47, 1617–1728 (2009)

    Article  CAS  Google Scholar 

  • Neimark, A.V., Vishnyakov, A.: A simulation method for the calculation of chemical potentials in small, inhomogeneous, and dense systems. J. Chem. Phys. 122, 234108 (2005)

    Article  Google Scholar 

  • Nguyen, T.X., Bhatia, S.K.: Probing the pore wall structure of nanoporous carbons using adsorption. Langmuir 20, 3532–3535 (2004)

    Article  CAS  Google Scholar 

  • Nicholson, D., Parsonage, N.G.: Computer Simulation and Statistical Mechanics of Adsorption. Academic Press, London (1982)

    Google Scholar 

  • Oliveira, J.C.A., López, R.H., Toso, J.P., Lucena, S.M.P., Cavalcante, C.L. Jr., Zgrablich, G.: On the influence of heterogeneity of graphite plates in the determination of the pore size distribution of activated carbons. Adsorption (2010, in press)

  • Prasad, M., Akkimaradi, B.S., Rastogi, S.C., Rhao, R.R., Srinivasan, K.: Heats of adsorption for charcoal nitrogen systems. Carbon 37, 1641–1642 (1999)

    Article  CAS  Google Scholar 

  • Prauchner, M.J., Rodríguez-Reinoso, F.: Preparation of granular activated carbon for adsorption of natural gas. Microporous Mesoporous Mater. 109, 581–584 (2008)

    Article  CAS  Google Scholar 

  • Ravikovitch, P.I., Vishnyakov, A., Russo, R., Neimark, A.V.: Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir 16, 2311–2320 (2000)

    Article  CAS  Google Scholar 

  • Rios, R.B., Silva, F.W.M., Torres, A.E.B., Azevedo, D.C.S., Cavalcante, C.L. Jr: Adsorption of methane in activated carbons obtained from coconut shells using H3PO4 chemical activation. Adsorption 15, 271–277 (2009)

    Article  CAS  Google Scholar 

  • Rodríguez-Reinoso, F., Garrido, J., Martín-Martínez, J.M., Molina-Sabio, M., Torregrosa, R.: The combined use of different approaches in the characterization of microporous carbons. Carbon 27, 23–32 (1989)

    Article  Google Scholar 

  • Rodríguez-Reinoso, F.: Production and applications of activated carbons. In: Schüth, F., Sing, K.S.W., Weitkamp, J. (eds.) Handbook of Porous Solids, pp. 1766–1827. Wiley/VCH, Weiheim (2002)

    Chapter  Google Scholar 

  • Rouzaud, J.N., Clinard, C.: Quantitative high-resolution transmission electron microscopy: a promising tool for carbon materials characterization. Fuel Process. Technol. 77–78, 229–235 (2002)

    Article  Google Scholar 

  • Santos, C., Andrade, M., Vieira, A.L., Martins, A., Pires, J., Freire, C., Carvalho, A.P.: Templated synthesis of carbon materials mediated by porous clay heterostructures. Carbon 48, 4049–4056 (2010)

    Article  CAS  Google Scholar 

  • Seaton, N.A., Walton, J.P.R.B., Quirke, N.: A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements. Carbon 27, 853–861 (1989)

    Article  CAS  Google Scholar 

  • Soares Maia, D.A., Sapag, K., Toso, J.P., López, R.H., Azevedo, D.C.S., Cavalcante, C.L. Jr., Zgrablich, G.: Characterization of activated carbon from peach stones through the mixed geometry model. Microporous Mesoporous Mater. 134, 181–188 (2010a)

    Article  CAS  Google Scholar 

  • Soares Maia, D.A., Oliveira, J.C.A., Toso, J.P., Sapag, K., López, R.H., Azevedo, D.C.S., Cavalcante, C.L. Jr., Zgrablich, G.: Characterization of the PSD of activated carbons from peach stones for separation of combustion gas mixtures. Adsorption (2010b, submitted)

  • Valladares, D.L., Rodríguez-Reinoso, F., Zgrablich, G.: Characterization of active carbons: the influence of the method in the determination of the pore size distribution. Carbon 36, 1491–1499 (1998)

    Article  CAS  Google Scholar 

  • Vishnyakov, A., Ravikovitch, P.I., Neimark, A.V.: Molecular level models for CO2 adsorption in nanopores. Langmuir 15, 8736–8742 (1999)

    Article  CAS  Google Scholar 

  • Vishnyakov, A., Neimark, A.V.: Multicomponent gauge cell method. J. Chem. Phys. 130, 224103 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Zgrablich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toso, J.P., López, R.H., de Azevedo, D.C.S. et al. Evaluation of a mixed geometry model for the characterization of activated carbons. Adsorption 17, 551–560 (2011). https://doi.org/10.1007/s10450-011-9324-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-011-9324-8

Keywords

Navigation