Skip to main content
Log in

Adsorption equilibrium and kinetics of copper ions and phenol onto modified adsorbents

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The adsorption equilibrium and kinetics of single and binary component copper ions and phenol onto powdered activated carbon (PAC), alginate beads and alginate-activated carbon beads (AAC) were studied. Adsorption equilibrium data for single component copper ions and phenol onto the adsorbents could be represented by the Langmuir equation. Multicomponent equilibrium data were correlated by the extended Langmuir and ideal adsorbed solution theory (IAST). The IAST gave the best fit to our data. The amount of copper ions adsorbed onto the AAC beads in the binary component was greater than that of phenol. The internal diffusion coefficients were determined by comparing the experimental concentration curves with those predicted from surface diffusion and pore diffusion model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A S :

surface area of adsorbent (m2/g)

C i :

initial concentration of bulk fluid (mol/m3)

C e :

saturation concentration of the adsorbate in the liquid phase (mol/m3)

d P :

particle diameter (m)

D P :

pore diffusion coefficient (m2/s)

D S :

surface diffusion coefficient (m2/s)

k f :

film mass transfer coefficient (m/s)

k F :

isotherm parameter (mol/kg)(mol/m3)−1/n

k L :

isotherm parameter (m3/mol)

k S :

isotherm parameter (mol/m3)−1/n

N A :

rate of mass transfer of adsobates to the external surface of the adsorbent (mol/s)

N :

number of component

q :

equilibrium amount adsorbed on the adsorbent (mol/kg)

q m :

maximum adsorption capacity of adsorbent (mol/kg)

R P :

particle radius (m)

V :

volume of solution (m3)

W :

weight of adsorbent (kg)

References

  • Bayramoglu, G., Arica, M.Y.: Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: horseradish peroxidase immobilized on magnetic beads. J. Hazard. Mater. 156(1), 148–155 (2008)

    Article  CAS  Google Scholar 

  • Bressa, G., Cima, L., Giunta, F., Macca, C.: Adsorptive power of different activated charcoal samples of some metals at various pH. Inorg. Chim. Acta 79, 304–305 (1983)

    Article  Google Scholar 

  • Clark, A.H., Ross-Murphy, S.B.: Structural and mechanical properties of biopolymer gels. Adv. Polym. Sci. 83, 57–192 (1987)

    Article  CAS  Google Scholar 

  • Crist, R.H., Martin, J.R., Chanko, J.: Uptake of metals on peat moss: an ion-exchange process. Environ. Sci. Technol. 30(8), 2456–2461 (1996)

    Article  CAS  Google Scholar 

  • Davis, T.A., Volesky, B., Mucci, A.: A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 37(18), 4311–4330 (2003)

    Article  CAS  Google Scholar 

  • Deans, J.R., Dixon, B.G.: Uptake of Pb2+ and Cu2+ by novel biopolymers. Water Res. 26(4), 469–472 (1992)

    Article  CAS  Google Scholar 

  • Freundlich, H.: Uber die adsorption in loesungen. J. Phys. Chem. 57, 385–470 (1907)

    CAS  Google Scholar 

  • Gilson, C.D., Thomas, A.: Calcium alginate bead manufacture: with and without immobilised yeast. Drop formation at a two-fluid nozzle. Chem. Technol. Biotechnol. 62(3), 227–232 (1995)

    Article  CAS  Google Scholar 

  • Jia, J., Yang, J., Liao, J., Wang, W., Wang, Z.: Treatment of dyeing wastewater with ACF electrodes. Water Res. 33(3), 881–884 (1999)

    Article  CAS  Google Scholar 

  • Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918)

    Article  CAS  Google Scholar 

  • Ma, Y.H., Lee, T.Y.: Transient diffusion in solids with a bipore distribution. AIChE J. 22(1), 147–152 (1976)

    Article  CAS  Google Scholar 

  • Martins, R.J.E., Parado, R., Boaventura, R.A.R.: Cadmium(II) and zinc(II) adsorption by the aquatic moss Fontinalis antipyretica: effect of temperature, pH and water hardness. Water Res. 38(3), 693–699 (2004)

    Article  CAS  Google Scholar 

  • Masamune, S., Smith, J.M.: Adsorption rate studies-significance of pore diffusion. AIChE J. 10(2), 246–252 (1964)

    Article  CAS  Google Scholar 

  • Myers, A.L., Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption. AIChE J. 11(1), 121–127 (1965)

    Article  CAS  Google Scholar 

  • McKay, G., Bino, M.J., Altememi, A.: External mass transfer during the adsorption of various pollutants onto activated carbon. Water Res. 20(4), 435–442 (1986)

    Article  CAS  Google Scholar 

  • Misic, D.M., Sudo, Y., Suzuki, M., Kawazoe, K.: Liquid-to-particle mass transfer in a stirred batch adsorption tank with non-linear isotherm. J. Chem. Eng. Jpn. 15, 67–70 (1982)

    Article  CAS  Google Scholar 

  • Moon, H., Tien, C.: Adsorption of gas mixtures on adsorbents with heterogeneous surfaces. Chem. Eng. Sci. 43, 2967–2980 (1988)

    Article  CAS  Google Scholar 

  • Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)

    Google Scholar 

  • Salame, I., Bandozs, T.J.: Role of surface chemistry in adsorption of phenol on activated carbons. J. Colloid Interface Sci. 264(2), 307–312 (2003)

    Article  CAS  Google Scholar 

  • Stewart, T.J., Yau, J.H., Allen, M.M., Brabander, D.J., Flynn, N.T.: Impacts of calcium-alginate density on equilibrium and kinetics of lead(II) sorption onto hydrogel beads. Colloid Polym. Sci. 287(9), 1033–1040 (2009)

    Article  CAS  Google Scholar 

  • Sips, R.: On the structure of a catalyst surface. J. Chem. Phys. 16(5), 490–495 (1948)

    Article  CAS  Google Scholar 

  • Tepe, O., Dursun, A.Y.: Combined effects of external mass transfer and biodegradation rates on removal of phenol by immobilized Ralstonia eutropha in a packed bed reactor. J. Hazard. Mater. 151(1), 9–16 (2008)

    Article  CAS  Google Scholar 

  • Terzyk, A.P.: Molecular properties and intermolecular forces—factors balancing the effect of carbon surface chemistry in adsorption of organics from dilute aqueous solutions. J. Colloid Interface Sci. 275(1), 9–29 (2004)

    Article  CAS  Google Scholar 

  • Traegner, U.K., Suidan, M.T.: Evaluation of surface and film diffusion coefficients for carbon adsorption. Water Res. 23(3), 267–273 (1989)

    Article  CAS  Google Scholar 

  • Uluozlu, O.D., Sari, A., Tuzen, M., Soylak, M.: Biosorption of Pb(II) and Cr(III) from aqueous solution by lichen (Parmelina tiliaceae) biomass. Bioresour. Technol. 99(8), 2972–2980 (2008)

    Article  CAS  Google Scholar 

  • Vidic, R.D., Tessmer, C.H., Uranowski, L.J.: Impact of surface properties of activated carbons on oxidative coupling of phenolic compounds. Carbon 35(9), 1349–1359 (1997)

    Article  CAS  Google Scholar 

  • Villacanas, F., Pereira, M.F.R., Órfäo, J.J.M., Figueiredo, J.L.: Adsorption of simple aromatic compounds on activated carbons. J. Colloid Interface Sci. 293(1), 128–136 (2006)

    Article  CAS  Google Scholar 

  • WanNgah, W.S., Endud, C.S., Mayanar, R.: Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React. Funct. Polym. 50, 181–190 (2002)

    Article  Google Scholar 

  • Yang, R.T.: Gas Separation by Adsorption Processes. Butterworths, Boston (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Young Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, T.Y., Cho, S.Y. & Kim, S.J. Adsorption equilibrium and kinetics of copper ions and phenol onto modified adsorbents. Adsorption 17, 135–143 (2011). https://doi.org/10.1007/s10450-010-9306-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-010-9306-2

Keywords

Navigation