Skip to main content
Log in

A novel and consistent method (TriPOD) to characterize an arbitrary porous solid for its accessible volume, accessible geometrical surface area and accessible pore size

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

We present an improved Monte Carlo integration method to calculate the accessible pore size distribution of a porous solid having known configuration of solid atoms. The pore size distribution obtained with the present method is consistent with the accessible volume and the accessible geometric surface area presented in previous publications (Do and Do, in J. Colloid Interface Sci. 316(2):317–330, 2007; Do et al. in Adsorpt. J., 2010). The accessible volume, accessible geometrical surface area and the pore size distribution method construct an unambiguous and robust single framework to characterize porous solids. This framework is based on the derivation of the space accessible to the center of mass of a probe molecule. The accessible pore size presented is an absolute quantity in the sense that a zero value is possible. We present the entire framework of this characterization method and compare the improved method with the one presented previously for a set of porous solids such as graphitic slit pores, defective slit pores, bundle of carbon nanotubes, zeolite and some metal organic frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrett, E.P., Joyner, L.G., Halenda, P.P.: The determination of pore volume and area distribution in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951)

    Article  CAS  Google Scholar 

  • Broekhoff, J.C.P., De Boer, J.H.: Pore systems in catalysts. XII. Pore distributions from the desorption branch of a nitrogen sorption isotherm in the case of cylindrical pores. 1. An analysis of the capillary evaporation process. J. Catal. 10(4), 368–376 (1968)

    Article  CAS  Google Scholar 

  • Civalleri, B., et al.: Ab-initio prediction of materials properties with crystal: MOF-5 as a case of study. CrystEngComm 8, 364–371 (2006)

    Article  CAS  Google Scholar 

  • Demontis, P., Stara, G., Suffritti, G.B.: Molecular dynamics simulation of anomalous diffusion of one-dimensional water molecule chains in Li-ABW zeolite. Microporous Mesoporous Mater. 86(1–3), 166–175 (2005)

    Article  CAS  Google Scholar 

  • Do, D.D., Do, H.D.: Effects of potential models in the vapor–liquid equilibria and adsorption of simple gases on graphitized thermal carbon black. Fluid Phase Equilibria 236(1–2), 169–177 (2005)

    Article  CAS  Google Scholar 

  • Do, D.D., Do, H.D.: Modeling of adsorption on nongraphitized carbon surface: GCMC simulation studies and comparison with experimental data. J. Phys. Chem. B 110(35), 17531–17538 (2006)

    Article  CAS  Google Scholar 

  • Do, D.D., Do, H.D.: Appropriate volumes for adsorption isotherm studies: The absolute void volume, accessible pore volume and enclosing particle volume. J. Colloid Interface Sci. 316(2), 317–330 (2007)

    Article  CAS  Google Scholar 

  • Do, D.D., Herrera, L.F., Do, H.D.: A new method to determine pore size and its volume distribution of porous solids having known atomistic configuration. J. Colloid Interface Sci. 328, 110–119 (2008a)

    Article  CAS  Google Scholar 

  • Do, D.D., Nicholson, D., Do, H.D.: On the Henry constant and isosteric heat at zero loading in gas phase adsorption. J. Colloid Interface Sci. 324(1–2), 15–24 (2008b)

    Article  CAS  Google Scholar 

  • Do, D.D., et al.: Henry constant and isosteric heat at zero-loading for gas adsorption in carbon nanotubes. Phys. Chem. Chem. Phys. 10, 7293–7303 (2008c)

    Article  CAS  Google Scholar 

  • Do, D.D., Herrera, L.F., Do, H.D., Nicholson, D.: A method for the determination of accessible surface area, pore volume, pore size and its volume distribution for homogeneous pores of different shapes. Adsorption J. (2010, in press)

  • Dombrowski, R.J., Lastoskie, C.M., Hyduke, D.R.: The Horvath-Kawazoe method revisited. Colloids Surf. A, Physicochem. Eng. Asp. 187, 23–39 (2001)

    Article  Google Scholar 

  • Dubinin, M.M., Stoeckli, H.F.: Homogeneous and heterogeneous micropore structures in carbonaceous adsorbents. J. Colloid Interface Sci. 75(1), 34–42 (1980)

    Article  CAS  Google Scholar 

  • Frost, H., Düren, T., Snurr, R.Q.: Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. J. Phys. Chem. B 110(19), 9565–9570 (2006)

    Article  CAS  Google Scholar 

  • Gelb, L.D., Gubbins, K.E.: Characterization of porous glasses: simulation models, adsorption isotherms, and the Brunauer-Emmett-Teller analysis method. Langmuir 14, 2097–2111 (1998)

    Article  CAS  Google Scholar 

  • Gregg, S.J., Sing, K.S.W.: Adsorption, Surface Area and Porosity, A. Press (ed.), p. xi, 303. Academic Press, San Diego (1982)

    Google Scholar 

  • Herrera, L., Do, D.D., Nicholson, D.: A Monte Carlo integration method to determine accessible volume, accessible surface area and its fractal dimension. J. Colloid Interface Sci. 348(2), 529–36 (2010)

    Article  CAS  Google Scholar 

  • Horvath, G., Kawazoe, K.: Method for the calculation of effective pore size distribution in molecular sieve carbon. J. Chem. Eng. Jpn. 16(6), 470–475 (1983)

    Article  CAS  Google Scholar 

  • Kaneko, K., et al.: Characterization of porous carbons with high resolution α-analysis and low temperature magnetic susceptibility. Adv. Colloid Interface Sci. 76–77, 295–320 (1998)

    Article  Google Scholar 

  • Kaneko, K., et al.: Role of gas adsorption in nanopore characterization. In: Studies in Surface Science and Catalysis, pp. 11–18. Elsevier, Amsterdam (2002)

    Google Scholar 

  • Li, H., et al.: Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 476–479 (1999)

    Article  Google Scholar 

  • Reed, T.B., Breck, D.W.: Crystalline zeolites. II. Crystal structures of synthetic zeolite, type A. J. Am. Chem. Soc. 78, 5972–5977 (1956)

    Article  CAS  Google Scholar 

  • Rouquerol, F., Rouquerol, J., Sing, K.: Adsorption by Powders and Porous Solids Principles, Methodology and Applications, A. Press (ed.), p. 465. Academic Press, New York (1999)

    Google Scholar 

  • Rouquerol, J., et al.: Recommendations for the characterization of porous solids. Pure Appl. Chem. 66(8), 1739–1758 (1994)

    Article  CAS  Google Scholar 

  • Rowsell, J.L.C., Yaghi, O.M.: Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 73, 3–14 (2004)

    Article  CAS  Google Scholar 

  • Saito, A., Foley, H.C.: Curvature and parametric sensitivity in models for adsorption in micropores. AIChE 37(3), 429–436 (1991)

    Article  CAS  Google Scholar 

  • Seaton, N.A., et al.: The molecular sieving mechanism in carbon molecular sieves: a molecular dynamics and critical path analysis. Langmuir 13(5), 1199–1204 (1997)

    Article  CAS  Google Scholar 

  • Sing, K.S.W., et al.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl. Chem. 57(4), 603–619 (1985)

    Article  CAS  Google Scholar 

  • Szostak, R.: Handbook of Molecular Sieves, p. 584. Van Nostrand Reinhold, New York (1992)

    Google Scholar 

  • Thomson, K.T., Gubbins, K.: Modeling structural morphology of microporous carbons by reverse Monte Carlo. Langmuir 16(13), 5761–5773 (2000)

    Article  CAS  Google Scholar 

  • Turner, A.R., Quirke, N.: A grand canonical Monte Carlo study of adsorption on graphitic surfaces with defects. Carbon 36(10), 1439–1446 (1998)

    Article  CAS  Google Scholar 

  • Turner, S., et al.: Direct imaging of loaded metal-organic framework materials (metal@MOF-5). Chem. Mater. 20(17), 5622–5627 (2008)

    Article  CAS  Google Scholar 

  • Walton, K.S., Snurr, R.Q.: Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. J. Am. Chem. Soc. 129, 8552–8556 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Do.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrera, L.F., Fan, C., Do, D.D. et al. A novel and consistent method (TriPOD) to characterize an arbitrary porous solid for its accessible volume, accessible geometrical surface area and accessible pore size. Adsorption 17, 55–68 (2011). https://doi.org/10.1007/s10450-010-9289-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-010-9289-z

Keywords

Navigation