Skip to main content
Log in

Developments and structures of mesopores in alkaline-treated ZSM-5 zeolites

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

ZSM-5 zeolites with SiO2/Al2O3 molar ratio of 24 were treated in 0.05 M aqueous sodium hydroxide solution at 325 K in different periods. The samples were characterized by means of nitrogen adsorption at 77 K, field emission scanning electron microscopy, X-ray diffractometry, and Fourier transform infrared spectroscopy. Analysis of the experimental results showed that the alkaline treatment periods have influence on the developments and structures of mesopores in the alkaline-treated ZSM-5 zeolites. Alkaline treatment initially develops mesopores mainly from the boundary portion of MFI zeolites to the bulk, while prolonged treatment destroys the mesopores, and an optimum mesoporosity is obtained by the treatment for 1.5 h. On the other hand, crystallinities and short-range order in alkaline treated zeolites have remained virtually unchanged according to the examination from X-ray diffractometry and Fourier transform infrared spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argauer, R.J. and G.R. Landolt, “Crystalline Zeolite ZSM-5 and Method of Preparing the Same,” U.S. Patent 3702886 (1972).

  • Barret, P., L.G. Joyner, and P.P. Halenda, “The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms,” J. Am. Chem. Soc., 73, 373–380 (1951).

    Article  Google Scholar 

  • Breck D.W., Zeolite Molecular Sieves, pp. 64–67, Robert E. Krieger Publishing Company, Malabar, FL, 1974.

  • Brunauer S., P.H. Emmett, and E. Teller, “Adsorption of Gases in Multimolecular Layers,” J. Am. Chem. Soc., 60, 309–319 (1938).

    Article  CAS  Google Scholar 

  • Cartlidge, S., H.-U. Nissen, and R. Wessicken, “Ternary Mesoporous Structure of Ultrastable Zeolite CSZ-1,” Zeolites, 9, 346–349 (1989).

    Article  CAS  Google Scholar 

  • Chen N.Y. and T.F. Degnan, “Industrial Catalytic Applications of Zeolites,” Chem. Eng. Prog., 84, 32–41 (1988).

    CAS  Google Scholar 

  • Choi-Feng, C., J.B. Hall, B.J. Huggins, and R.A. Begerlein, “Electron Microscope Investigation of Mesopore Formation and Aluminum Migration in USY Catalysts,” J. Catal., 140, 395–405 (1993).

    Article  CAS  Google Scholar 

  • Christensen, C.H., I. Schmidt, A. Carlsson, K. Johannsen, and K. Herbst, “Crystals in Crystals-Nanocrystals within Mesoporous Zeolite Single Crystals,” J. Am. Chem. Soc., 127, 8098–8102 (2005).

    Article  CAS  Google Scholar 

  • Cizmek, B., B. Suboti, R. Aiello, F. Crea, A. Nastro, and C. Tuoto, “Dissolution of High-silica Zeolites in Alkaline Solutions I. Dissolution of Silicalite-1 and ZSM-5 with Different Aluminum Content,” Microporous Materials, 4, 159–168 (1995).

    Article  CAS  Google Scholar 

  • Cizmek, B., B. Suboti, I. Smit, A. Tonejc, R. Aiello, F. Crea, and A. Nastro, “Dissolution of High-silica Zeolites in Alkaline Solutions II. Dissolution of ‘Activated’ Silicalite-1 and ZSM-5 with Different Aluminum Content,” Microporous Mater., 8, 159–169 (1997).

    Article  Google Scholar 

  • Corma, A., “From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis,” Chem. Rev., 97, 2373–2420 (1997).

    Article  CAS  Google Scholar 

  • Corma, A., M.J. Diaz-Cabanas, J. Martinez-Triguero, F. Rey, and J. Rius, “A Large-cavity Zeolite with Wide Pore Windows and Potential as an Oil Refining Catalyst,” Nature, 418, 514–517 (2002).

    Article  CAS  Google Scholar 

  • Corma, A., “State of the Art and Future Challenges of Zeolites as Catalysts,” J. Catal., 216, 298–312 (2003).

    Article  CAS  Google Scholar 

  • Davis, M.E., “Ordered Porous Materials for Emerging Applications,” Nature, 417, 813–821 (2002).

    Article  CAS  Google Scholar 

  • Ghose S. and B. Mattiasson, “Protein Adsorption to Hydrophobic Zeolite Y: Salt effects and Application to Protein Fractionation,” Biotechnol. Appl. Biochem, 18, 311–320 (1993).

    CAS  Google Scholar 

  • Gregg, S.J. and K.S.W. Sing, Adsorption, Surface Area and Porosity, pp 111–194, 2nd edition, Academic Press, London, 1982.

  • Groen, J.C., J.A. Moulijn, and J. Pérez-Ramírez, “Decoupling Mesoporosity Formation and Acidity Modification in ZSM-5 Zeolites by Sequential Desilication–dealumination,” Microporous Mesoporous Mater., 87, 153–161 (2005a).

    Article  CAS  Google Scholar 

  • Groen, J.C., J.C. Jansen, J.A. Moulijn, and J. Pérez–Ramírez, “Optiomal Aluminum-Assised Mesoporosity Development in MFI Zeolites by Desilication,” J. Phys. Chem. B, 108, 13062–13065 (2004).

    Article  CAS  Google Scholar 

  • Groen, J.C., J.Pérez-Ramírez, and L.A.A. Peffer, “Formation of Uniform Mesopores in ZSM-5 Zeolite upon AlKaline Post-treatment,” Chem. Lett., 94–94 (2002).

  • Groen, J.C., L.A.A. Peffer, and J. Pérez-Ramírez, “Pore Size Determination in Modified Micro- and Mesoporous Materials. Pitfalls and Limitations in Gas Adsorption Data Analysis,” Microporous Mesoporous Mater., 60, 1–17 (2003).

    Article  CAS  Google Scholar 

  • Groen, J.C., L.A.A. Peffer, J.A. Moulijn, and J. Pérez-Ramírez, “Mechanism of Hierachical Porosity Development in MFI Zeolites by Desilication: The Role of Aluminium as a Pore-Directing Agent,” Chem. Eur. J., 11, 4983–4994 (2005b).

    Article  CAS  Google Scholar 

  • Groen, J.C., S. Brouwer, L.A.A. Peffer, and J. Pérez-Ramírez, “Application of Mercury Intrusion Porosimetry for Characterization of Combined Micro- and Mesoporous Zeolites,” Part. Part. Syst. Charact, 23, 101–106 (2006).

    Article  CAS  Google Scholar 

  • Groen, J.C., T. Bach, U. Ziese, A.M. Paulaime-van Donk, K.P. de Jong, J.A. Moulijn, and J. Pérez-Ramírez, “Creation of Hollow Zeolite Architectures by Controlled Desillication of Al-Zoned ZSM-5 Crystals,” J. Am. Chem. Soc., 127, 10792–10793 (2005c).

    Article  CAS  Google Scholar 

  • Hartman, M., “Hierarchical Zeolites: A Proven Strategy to Combine Shape Selectivity with Efficient Mass Transport,” Angew. Chem, Int. Ed., 43, 5880–5882 (2004).

    Google Scholar 

  • Herrmann, C., J. Haas, and F. Fetting, “Effect of the Crystal Size on the Activity of ZSM-5 Catalysts in Various Reactions,” Appl. Catal., 35, 299–310 (1987).

    Article  CAS  Google Scholar 

  • Jacobsen, C.J.H., C. Madsen, J. Houzvicka, I. Schmidt, and A. Carlsson, “Mesoporous Zeolite Single Crystals,” J. Am. Chem. Soc., 122, 7116–7117 (2000).

    Article  CAS  Google Scholar 

  • Jansen, J.C., F.J. van der Gaag, and H. van Bekkum, “Identification of ZSM-type and Other 5-ring Containing Zeolites by i.r. Spectroscopy,” Zeolites, 369–372 (1984).

  • Janssen, A.H., I. Schmidt, C.J.H. Jacobsen, A.J. Koster, and K.P. de Jong, “Exploratory Study of Mesopore Templating with Carbon During Zeolite Synthesis,” Microporous Mesoporous Mater., 65, 59–75 (2003).

    Article  CAS  Google Scholar 

  • Kärger J. and D.M. Ruthven, Diffusion in Zeolites and Other Microporous Materials, pp. 375–426, Wiley, New York, 1992.

  • Lynch, J., F. Raatz, and P. Dufresne, “Characterization of the Textural Properties of Dealuminated HY Forms,” Zeolites, 7, 333–340 (1987).

    Article  CAS  Google Scholar 

  • Ogura, M., S. Shinomiya, J. Tateno, Y. Nara, E. Kikuchi, and M. Matsukata, “Formation of Uniform Mesopores in ZSM-5 Zeolite through Treatment in Alkaline Solution,” Chem. Lett., 882–883 (2000).

  • Ogura, M., S. Shinomiya, J. Tateno, Y. Nara, M. Nomura, E. Kikuchi, and M. Matsukata, “Alkali-treatment Technique – New Method for Modification of Structural and Acid-catalytic Properties of ZSM-5 Zeolites,” Appl. Catal. A, 219, 33–43 (2001).

    Article  CAS  Google Scholar 

  • Patzelová, V. and N.I. Jaeger, “Texture of Deep Bed Treated Y Zeolites,” Zeolites, 7, 240–242 (1987).

    Article  Google Scholar 

  • Perez-Ramirez J., F. Kapteijn, J.C. Groen, A. Domenech, G. Mul, and J.A. Moulijn, “Steam-activated FeMFI Zeolites. Evolution of Iron Species and Activity in Direct N2O Decomposition,” J. Catal., 214, 33–45 (2003).

    Article  CAS  Google Scholar 

  • Pires J., A. Carvalho, and M.B. de Carvaho, “Adsorption of Volatile Organic Compounds in Y Zeolites and Pillared Clays,” Micropor. Mesopor. Mater., 43, 277–287 (2001).

    Article  CAS  Google Scholar 

  • Richter M., H. Berndt, R. Eckelt, M. Schneider, and R. Fricke, “Zeolite-mediated Removal of NOx by NH3 from Exhaust Streams at Low Temperatures,” Catalysis Today, 54, 531–545 (1999).

    Article  CAS  Google Scholar 

  • Saito, A. and H.C. Foley, “Argon Porosimetry of Selected Molecular Sieves: Experiments and Examination of the Adapted Horvath-Kawazoe Model,” Microporous Mater., 3, 531–542 (1995).

    Article  CAS  Google Scholar 

  • Saito, A. and H.C. Foley, “Curvature and Parametric Sensitivity in Models for Adsorption in Micropores,” AIChE J., 37, 429–436 (1991).

    Article  CAS  Google Scholar 

  • Sakthivel, A., S. Huang, W. Chen, Z. Lan, K. Chen, T. Kim, R. Ryoo, A.S.T. Chiang, and S. Liu, “Replication of Mesoporous Aluminosilicate Molecular Sieves (RMMs) with Zeolite Framework from Mesoporous Carbons (CMKs),” Chem. Mater., 16, 3168–3175 (2004).

    Article  CAS  Google Scholar 

  • Schmidt, I., A. Boisen, E. Gustavsson, K. Stahl, S. Pehrson, S. Dahl, A. Carlsson, and C.J.H. Jacobsen, “Carbon Nanotube Templated Growth of Mesoporous Zeolite Single Crystals,” Chem. Mater., 13, 4416–4418 (2001).

    Article  CAS  Google Scholar 

  • Scholle, K.F.M.G.J., W.S. Veeman, P. Frenken, and G.P.M. van der Velden, “Characterization of Intermediate TPA-ZSM-5 Type Structures During Crystallization,” Appl. Catal., 17, 233–259 (1985).

    Google Scholar 

  • Smith, J.V., “Topochemistry of Zeolites and Related Materials. 1. Topology and Geometry,” Chem. Rev., 88, 149–182 (1988).

  • Suzuki, T. and T. Okuhara, “Change in Pore Structure of MFI Zeolite by Treatment with NaOH Aqueous Solution,” Micropor. Mesopor. Mater., 43, 83–89 (2001).

    Article  CAS  Google Scholar 

  • Tao, Y., H.Kanoh, and K. Kaneko, “ZSM-5 Monolith of Uniform Mesoporous Channels,” J. Am. Chem. Soc., 125, 6044–6045 (2003).

    Article  CAS  Google Scholar 

  • Tao, Y., H. Kanoh, J.C. Groen, and K. Kaneko, “Characterization of Alkaline Post-treated ZSM-5 Zeolites by Low Temperature Nitrogen adsorption,” Stud. Surf. Sci. Catal., in press.

  • Tao, Y.H., Kanoh, L. Abrams, and K. Kaneko, “Mesopore-Modified Zeolites: Preparation, Characterization, and Appliations,” Chem. Rev., 106, 896–910 (2006).

  • van Donk, S., A. Broersma, O.L.J. Gijzeman, J.A. van Bokhoven, J.H. Bitter, and K.P. de Jong, “Combined Diffusion, Adsorption, and Reaction Studies of n-Hexane Hydroisomerization over Pt/H–Mordenite in an Oscillating Microbalance,” J. Catal., 204, 272–280 (2001).

    Article  CAS  Google Scholar 

  • van Donk, S., A.H. Janssen, J.H. Bitter, and K.P. de Jong, “Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts,” Catal. Rev., 45, 297–319 (2003).

    Article  CAS  Google Scholar 

  • Wu, E.L., S.L. Lawton, D.H. Olson, A.C., Jr. Rohrman, and G.T. Kokotailo, “ZSM-5-Type Materials. Factors Affecting Crystal Symmetry,” J. Phys. Chem., 83, 2777–2781 (1979).

    Google Scholar 

  • Yang, Z., Y. Xia, and R. Mokaya, “Zeolite ZSM-5 with Unique Supermicropores Synthesized Using Mesoporous Carbon as a Template,” Adv. Mater., 16, 727–732 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousheng Tao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, Y., Kanoh, H. & Kaneko, K. Developments and structures of mesopores in alkaline-treated ZSM-5 zeolites. Adsorption 12, 309–316 (2006). https://doi.org/10.1007/s10450-006-0561-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-006-0561-1

Keywords

Navigation