Skip to main content
Log in

Discontinuous Galerkin reduced basis empirical quadrature procedure for model reduction of parametrized nonlinear conservation laws

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We present a model reduction formulation for parametrized nonlinear partial differential equations (PDEs) associated with steady hyperbolic and convection-dominated conservation laws. Our formulation builds on three ingredients: a discontinuous Galerkin (DG) method which provides stability for conservation laws, reduced basis (RB) spaces which provide low-dimensional approximations of the parametric solution manifold, and the empirical quadrature procedure (EQP) which provides hyperreduction of the Galerkin-projection-based reduced model. The hyperreduced system inherits the stability of the DG discretization: (i) energy stability for linear hyperbolic systems, (ii) symmetry and non-negativity for steady linear diffusion systems, and hence (iii) energy stability for linear convection-diffusion systems. In addition, the framework provides (a) a direct quantitative control of the solution error induced by the hyperreduction, (b) efficient and simple hyperreduction posed as a 1 minimization problem, and (c) systematic identification of the reduced bases and the empirical quadrature rule by a greedy algorithm. We demonstrate the formulation for parametrized aerodynamics problems governed by the compressible Euler and Navier-Stokes equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An, S.S., Kim, T., James, D.L.: Optimizing cubature for efficient integration of subspace deformations. ACM Trans. Graph. 27(5), 165:1–165:10 (2008). http://doi.acm.org/10.1145/1409060.1409118

    Article  Google Scholar 

  2. Antonietti, P.F., Pacciarini, P., Quarteroni, A.: A discontinuous Galerkin reduced basis element method for elliptic problems. ESAIM: Mathematical Modelling and Numerical Analysis 50(2), 337–360 (2016)

    Article  MathSciNet  Google Scholar 

  3. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptical problems. SIAM J. Numer. Anal. 39 (5), 1749–1779 (2002)

    Article  Google Scholar 

  4. Astrid, P., Weiland, S., Willcox, K., Backx, T.: Missing point estimation in models described by proper orthogonal decomposition. IEEE Trans. Autom. Control 53(10), 2237–2251 (2008)

    Article  MathSciNet  Google Scholar 

  5. Barone, M.F., Kalashnikova, I., Segalman, D.J., Thornquist, H.K.: Stable Galerkin reduced order models for linearized compressible flow. J. Comput. Phys. 228(6), 1932–1946 (2009)

    Article  MathSciNet  Google Scholar 

  6. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Paris, Ser. I 339, 667–672 (2004)

    Article  MathSciNet  Google Scholar 

  7. Barth, T.J.: Numerical methods for gasdynamic systems on unstructured meshes. In: Kroner, D., Olhberger, M., Rohde, C. (eds.) An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, pp 195–282. Springer-Verlag (1999)

  8. Bassi, F., Shu, S.: GMRES discontinuous Galerkin solution of the compressible Navier-stokes equations. In: Cockburn, K. (ed.) Discontinuous Galerkin Methods: Theory, Computation and Applications, pp 197–208. Springer, Berlin (2000)

    Google Scholar 

  9. Brezzi, F., Rappaz, J., Raviart, P.A.: Finite dimensional approximation of nonlinear problems. Part I: branches of nonsingular solutions. Numer. Math. 36, 1–25 (1980)

    Article  MathSciNet  Google Scholar 

  10. Bui-Thanh, T., Murali, D., Willcox, K.: Proper orthogonal decomposition extensions for parametric applications in compressible aerodynamics. AIAA 2003-4213, AIAA (2003)

  11. Carlberg, K., Bou-Mosleh, C., Farhat, C.: Efficient non-linear model reduction via a least-squares Petrov–Galerkin projection and compressive tensor approximations. Int. J. Numer. Methods Eng. 86(2), 155–181 (2011)

    Article  MathSciNet  Google Scholar 

  12. Carlberg, K., Tuminaro, R., Boggs, P.: Preserving Lagrangian structure in nonlinear model reduction with application to structural dynamics. SIAM J. Sci. Comput. 37(2), B153–B184 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Cockburn, B.: Discontinuous Galerkin methods. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fü,r Angewandte Mathematik und Mechanik 83(11), 731–754 (2003)

    Article  MathSciNet  Google Scholar 

  14. Everson, R., Sirovich, L.: Karhunen-Loève procedure for gappy data. J. Opt. Soc. Am. A 12(8), 1657–1664 (1995)

    Article  Google Scholar 

  15. Farhat, C., Avery, P., Chapman, T., Cortial, J.: Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency. Int. J. Numer. Methods Eng. 98(9), 625–662 (2014)

    Article  MathSciNet  Google Scholar 

  16. Farhat, C., Chapman, T., Avery, P.: Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models. Int. J. Numer. Methods Eng. 102(5), 1077–1110 (2015)

    Article  MathSciNet  Google Scholar 

  17. Grepl, M.A., Maday, Y., Nguyen, N.C., Patera, A.T.: Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: M2AN 41(3), 575–605 (2007)

    Article  MathSciNet  Google Scholar 

  18. Hernández, J., Caicedo, M., Ferrer, A.: Dimensional hyper-reduction of nonlinear finite element models via empirical cubature. Comput. Methods Appl. Mesh. Eng. 313, 687–722 (2017)

    Article  MathSciNet  Google Scholar 

  19. Hesthaven, J.S., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer, Cham (2016)

    Book  Google Scholar 

  20. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods. Springer, New York (2008)

    Book  Google Scholar 

  21. Iollo, A., Lombardi, D.: Advection modes by optimal mass transfer. Physical Review E 89(2) (2014)

  22. LeGresley, P.A., Alonso, J.J.: Investigation of non-linear projection for POD based reduced order models for aerodynamics. AIAA 2001–0926, AIAA (2001)

  23. LeGresley, P.A., Alonso, J.J.: Dynamic domain decomposition and error correction for reduced order models. In: 41St Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics (2003)

  24. Nguyen, N.C., Peraire, J.: An efficient reduced-order modeling approach for non-linear parametrized partial differential equations. Int. J. Numer. Methods Eng. 76(1), 27–55 (2008)

    Article  MathSciNet  Google Scholar 

  25. Ohlberger, M., Rave, S.: Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing. C.R. Math. 351(23-24), 901–906 (2013)

    Article  MathSciNet  Google Scholar 

  26. Ohlberger, M., Rave, S.: Reduced basis methods: success, limitations and future challenges. In: Proceedings of the Conference Algoritmy, pp 1–12 (2016)

  27. Ohlberger, M., Schindler, F.: Error control for the localized reduced basis multiscale method with adaptive on-line enrichment. SIAM J. Sci. Commun. 37(6), A2865–A2895 (2015)

    Article  MathSciNet  Google Scholar 

  28. Patera, A.T., Yano, M.: An LP empirical quadrature procedure for parametrized functions. C. R. Acad. Sci. Paris, Ser I (2017)

  29. Pietro, D.A.D., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Springer, Berlin (2012)

    Book  Google Scholar 

  30. Pinkus, A: n-widths of Sobolev spaces in l p. Constr. Approx. 1(1), 15–62 (1985)

    Article  MathSciNet  Google Scholar 

  31. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations. Springer, Cham (2016)

    Book  Google Scholar 

  32. Riviere, B.M.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. The Society for Industrial and Applied Mathematics, Philadelphia (2008)

    Book  Google Scholar 

  33. Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations — application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15(3), 229–275 (2008)

    Article  MathSciNet  Google Scholar 

  34. Ryu, E.K., Boyd, S.P.: Extensions of gauss quadrature via linear programming. Found Comput. Math 15(4), 953–971 (2015)

    Article  MathSciNet  Google Scholar 

  35. Washabaugh, K., Amsallem, D., Zahr, M., Farhat, C.: Nonlinear model reduction for CFD problems using local reduced-order bases. AIAA 2012-2686, AIAA (2012)

  36. Washabaugh, K., Zahr, M.J., Farhat, C.: On the use of discrete nonlinear reduced-order models for the prediction of steady-state flows past parametrically deformed complex geometries. AIAA 2016-1814 AIAA (2016)

  37. Welper, G.: Interpolation of functions with parameter dependent jumps by transformed snapshots. SIAM J. Sci. Comput. 39(4), A1225–A1250 (2017)

    Article  MathSciNet  Google Scholar 

  38. Yano, M., Modisette, J.M., Darmofal, D.: The importance of mesh adaptation for higher-order discretizations of aerodynamic flows. AIAA 2011-3852, AIAA (2011)

  39. Yano, M., Patera, A.T.: An LP empirical quadrature procedure for reduced basis treatment of parametrized nonlinear PDEs. Comput. Methods Appl. Mesh Eng. 344, 1104–1123 (2019)

    Article  MathSciNet  Google Scholar 

  40. Zimmermann, R., Görtz, S.: Non-linear reduced order models for steady aerodynamics. Procedia Comput. Sci. 1(1), 165–174 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Anthony Patera (MIT) for many fruitful discussions and the anonymous reviewers for their helpful feedback. We acknowledge the computational resources provided by Compute Canada/SciNet.

Funding

This study was financially supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Yano.

Additional information

Communicated by: Anthony Nouy

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yano, M. Discontinuous Galerkin reduced basis empirical quadrature procedure for model reduction of parametrized nonlinear conservation laws. Adv Comput Math 45, 2287–2320 (2019). https://doi.org/10.1007/s10444-019-09710-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-019-09710-z

Keywords

Mathematics Subject Classification (2010)

Navigation