Skip to main content
Log in

Material stability analysis of particle methods

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Material instabilities are precursors to phenomena such as shear bands and fracture. Therefore, numerical methods that are intended for failure simulation need to reproduce the onset of material instabilities with reasonable fidelity. Here the effectiveness of particle discretizations in reproducing of the onset of material instabilities is analyzed in two dimensions. For this purpose, a simplified hyperelastic law and a Blatz–Ko material are used. It is shown that the Eulerian kernels used in smooth particle hydrodynamics severely distort the domain of material stability, so that material instabilities can occur in stress states that should be stable. In particular, for the uniaxial case, material instabilities occur at much lower stresses, which is often called the tensile instability. On the other hand, for Lagrangian kernels, the domain of material stability is reproduced very well. We also show that particle methods without stress points exhibit instabilities due to rank deficiency of the discrete equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Bazant, T. Belytschko and T.P. Cheng, Continuum theory for strain-softening, J. Engrg. Mech. 110 (1984) 1666–1692.

    Article  Google Scholar 

  2. S. Beissel and T. Belytschko, Nodal integration of the element-free Galerkin method, Comput. Methods Appl. Mech. Engrg. 139 (1996) 49–74.

    MATH  MathSciNet  Google Scholar 

  3. T. Belytschko, Y. Guo, W.K. Liu and S.P. Xiao, A unified stability analysis of meshless particle methods, Internat. J. Numer. Methods Engrg. 48 (2000) 1359.

    MATH  MathSciNet  Google Scholar 

  4. T. Belytschko, K. Krongauz, D. Organ, M. Fleming and P. Krysl, Meshless methods: An overview and recent developments, Comput. Methods Appl. Mech. Engrg. 139 (1996) 3–47.

    MATH  Google Scholar 

  5. T. Belytschko, W.K. Liu and B. Moran, Nonlinear Finite Elements for Continua and Structures (Wiley, New York, 2000).

    MATH  Google Scholar 

  6. T. Belytschko, Y.Y. Lu and L. Gu, Element-free Galerkin methods, Internat. J. Numer. Methods Engrg. 37 (1994) 229–256.

    MATH  MathSciNet  Google Scholar 

  7. T. Belytschko and S.P. Xiao, Stability analysis of particle methods with corrected derivatives, Comput. Math. Appl. 43 (2002) 329–350.

    MATH  MathSciNet  Google Scholar 

  8. P.J. Blatz and W.L. Ko, Application of finite elastic theory to the deformation of rubbery materials, Trans. Soc. Rheol. 6 (1962) 223.

    Google Scholar 

  9. J. Dolbow and T. Belytschko, Numerical integration of the Galerkin weak form in meshfree methods, Comput. Mech. 23 (1999) 219–230.

    MATH  MathSciNet  Google Scholar 

  10. C.T. Dyka and R.P. Ingel, An approach for tension instability in smoothed particle hydrodynamics (SPH), Comput. Struct. 57 (1995) 573–580.

    MATH  Google Scholar 

  11. C.T. Dyka, P.W. Randles and R.P. Ingel, Stress points for tension instability in SPH, Internat. J. Numer. Methods Engrg. 40 (1997) 2325–2341.

    MATH  Google Scholar 

  12. D.P. Flanagan and T. Belytschko, A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Internat. J. Numer. Methods Engrg. 17 (1981) 679–706.

    MATH  Google Scholar 

  13. J. Hadamard, Leçons sur la Propagation des Ondes et les Equations de l’Hydrodynamique (Hermann, Paris, 1903) chapter 6.

    MATH  Google Scholar 

  14. R. Hill, Acceleration waves in solids, J. Mech. Phys. Solids 10 (1962) 1–16.

    MATH  MathSciNet  Google Scholar 

  15. J.F. Kalthoff, Modes of dynamic shear failure in solid, Internat. J. Fract. 101 (2000) 1–31.

    Google Scholar 

  16. J.K. Knowles and E. Sternberg, On the ellipticity of the equations of nonlinear elastostatics for a special material, J. Elasticity 5(3/4) (1975) 341–361.

    MATH  MathSciNet  Google Scholar 

  17. K. Krongauz and T. Belytschko, Consistent pseudo-derivatives in meshless methods, Comput. Methods Appl. Mech. Engrg. 146 (1998) 371–386.

    MathSciNet  Google Scholar 

  18. W.K. Liu, S.F. Li and T. Belytschko, Moving least square reproducing kernel method. (I) Methodology and convergence, Comput. Methods Appl. Mech. Engrg. 143 (1997) 113–154.

    MATH  MathSciNet  Google Scholar 

  19. A. Marchand and J. Duffy, An experimental study of the formation process of adiabatic shear bands in a structural steel, J. Mech. Phys. Solids 38 (1988) 251–283.

    Google Scholar 

  20. J.J. Monaghan, An introduction to SPH, Comput. Phys. Comm. 48 (1988) 89–96.

    MATH  Google Scholar 

  21. R.W. Ogden, Nonlinear Elastic Deformations (Ellis Horwood, Chichester).

  22. T. Rabczuk, T. Belytschko and S.P. Xiao, Stable particle methods based on Lagrangian kernels, J. Numer. Methods Engrg., accepted.

  23. P. Randles and L. Libersky, Smoothed particle hydrodynamics: Some recent improvements and applications, Comput. Methods Appl. Mech. Engrg. 146 (1968) 371–386.

    Google Scholar 

  24. P.W. Randles, A.G. Petschek, L.D. Libersky and C.T. Dyka, Stability of DPD and SPH, in: Lecture Notes in Computer Science, Vol. 26 (Springer, New York, 2002) pp. 339–358.

    Google Scholar 

  25. J.R. Rice, Inelastic constitutive relations for solids: Internal-variable theory and its application to metal plasticity, J. Mech. Phys. Solids 19 (1971) 443–455.

    Google Scholar 

  26. J.W. Rudnicki and J.R. Rice, Conditions for localization in pressure sensitive dilatant materials, J. Mech. Phys. Solids 23 (1975) 371–394.

    Google Scholar 

  27. J.W. Swegle, D.L. Hicks and S.W. Attaway, Smoothed particle hydrodynamics stability analysis, J. Comput. Phys. 116 (1995) 123–134.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Xiao.

Additional information

Communicated by Z. Wu and B.Y.C. Hon

AMS subject classification

74S30

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, S.P., Belytschko, T. Material stability analysis of particle methods. Adv Comput Math 23, 171–190 (2005). https://doi.org/10.1007/s10444-004-1817-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-004-1817-5

Keywords

Navigation