Skip to main content
Log in

Treatment of near-incompressibility in meshfree and immersed-particle methods

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

We propose new projection methods for treating near-incompressibility in small and large deformation elasticity and plasticity within the framework of particle and meshfree methods. Using the \(\overline{\mathbf {B}}\) and \(\overline{\mathbf {F}}\) techniques as our point of departure, we develop projection methods for the conforming reproducing kernel method and the immersed-particle or material point-like methods. The methods are based on the projection of the dilatational part of the appropriate measure of deformation onto lower-dimensional approximation spaces, according to the traditional \(\overline{\mathbf {B}}\) and \(\overline{\mathbf {F}}\) approaches, but tailored to meshfree and particle methods. The presented numerical examples exhibit reduced stress oscillations and are free of volumetric locking and hourglassing phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Brezzi F, Fortin M (2012) Mixed and hybrid finite element methods, vol 15. Springer, Berlin

    MATH  Google Scholar 

  2. Simo JC, Rifai M (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Eng 29(8):1595–1638

    MathSciNet  MATH  Google Scholar 

  3. Brink U, Stein E (1996) On some mixed finite element methods for incompressible and nearly incompressible finite elasticity. Comput Mech 19(1):105–119

    MATH  Google Scholar 

  4. Klaas O, Maniatty A, Shephard MS (1999) A stabilized mixed finite element method for finite elasticity.: Formulation for linear displacement and pressure interpolation. Comput Methods Appl Mech Eng 180(1–2):65–79

    MATH  Google Scholar 

  5. Maniatty AM, Liu Y, Klaas O, Shephard MS (2002) Higher order stabilized finite element method for hyperelastic finite deformation. Comput Methods Appl Mech Eng 191(13–14):1491–1503

    MATH  Google Scholar 

  6. Ramesh B, Maniatty AM (2005) Stabilized finite element formulation for elastic-plastic finite deformations. Comput Methods Appl Mech Eng 194(6–8):775–800

    MATH  Google Scholar 

  7. Belytschko T, Ong JSJ, Liu WK, Kennedy JM (1984) Hourglass control in linear and nonlinear problems. Comput Methods Appl Mech Eng 43(3):251–276

    MATH  Google Scholar 

  8. Flanagan D, Belytschko T (1981) A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. Int J Numer Methods Eng 17(5):679–706

    MATH  Google Scholar 

  9. Reese S, Wriggers P, Reddy B (2000) A new locking-free brick element technique for large deformation problems in elasticity. Comput Struct 75(3):291–304

    MathSciNet  Google Scholar 

  10. Wilson E, Taylor R, Doherty W, Ghaboussi J (1973) Incompatible displacement models. In: Fenves SJ, Perrone N, Robinson AR (eds) Numerical and computer methods in structural mechanics. Elsevier, Amsterdam, pp 43–57

    Google Scholar 

  11. Kasper EP, Taylor RL (2000) A mixed-enhanced strain method: Part I: geometrically linear problems. Comput Struct 75(3):237–250

    Google Scholar 

  12. Kasper EP, Taylor RL (2000) A mixed-enhanced strain method: Part II: geometrically nonlinear problems. Comput Struct 75(3):251–260

    Google Scholar 

  13. Hughes TJ (1980) Generalization of selective integration procedures to anisotropic and nonlinear media. Int J Numer Methods Eng 15(9):1413–1418

    MathSciNet  MATH  Google Scholar 

  14. Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation, North Chelmsford

    Google Scholar 

  15. Hughes TJ (1977) Equivalence of finite elements for nearly incompressible elasticity. J Appl Mech ASME E 44:181–183

    Google Scholar 

  16. Hughes T, Malkus D (1981) A general penalty/mixed equivalence theorem for anisotropic, incompressible finite elements. In: International symposium on hybrid and mixed finite element methods, Atlanta, GA, p 1981

  17. Malkus DS, Hughes TJ (1978) Mixed finite element methods-reduced and selective integration techniques: a unification of concepts. Comput Methods Appl Mech Eng 15(1):63–81

    MATH  Google Scholar 

  18. Hallquist JO et al (2007) Ls-dyna keyword user’s manual. Livermore Softw Technol Corp 970:299–800

    Google Scholar 

  19. Maker BN (1991) Nike3d: A nonlinear, implicit, three-dimensional finite element code for solid and structural mechanics. Technical report, Lawrence Livermore National Laboratory, CA (USA)

  20. Elguedj T, Bazilevs Y, Calo VM, Hughes TJ (2008) B and f projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order nurbs elements. Comput Methods Appl Mech Eng 197(33–40):2732–2762

    MATH  Google Scholar 

  21. Elguedj T, Hughes TJ (2014) Isogeometric analysis of nearly incompressible large strain plasticity. Comput Methods Appl Mech Eng 268:388–416

    MathSciNet  MATH  Google Scholar 

  22. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106

    MathSciNet  MATH  Google Scholar 

  23. Liu WK, Chen Y, Jun S, Chen J, Belytschko T, Pan C, Uras R, Chang C (1996) Overview and applications of the reproducing kernel particle methods. Arch Comput Eng 3(1):3–80

    MathSciNet  Google Scholar 

  24. Koester JJ, Chen JS (2019) Conforming window functions for meshfree methods. Comput Methods Appl Mech Eng 347:588–621. https://doi.org/10.1016/j.cma.2018.12.042

    Article  MathSciNet  Google Scholar 

  25. Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118(1–2):179–196

    MathSciNet  MATH  Google Scholar 

  26. Bazilevs Y, Kamran K, Moutsanidis G, Benson D, Oñate E (2017) A new formulation for air-blast fluid-structure interaction using an immersed approach part. I: basic methodology and fem-based simulations. Comput Mech 60(1):83–100

    MathSciNet  MATH  Google Scholar 

  27. Bazilevs Y, Moutsanidis G, Bueno J, Kamran K, Kamensky D, Hillman M, Gomez H, Chen J (2017) A new formulation for air-blast fluid-structure interaction using an immersed approach: part ii-coupling of iga and meshfree discretizations. Comput Mech 60(1):101–116

    MathSciNet  MATH  Google Scholar 

  28. Zhang F, Zhang X, Sze KY, Lian Y, Liu Y (2017) Incompressible material point method for free surface flow. J Comput Phys 330:92–110

    MathSciNet  MATH  Google Scholar 

  29. Mast C, Mackenzie-Helnwein P, Arduino P, Miller GR, Shin W (2012) Mitigating kinematic locking in the material point method. J Comput Phys 231(16):5351–5373

    MathSciNet  Google Scholar 

  30. Yang WC, Arduino P, Miller GR, Mackenzie-Helnwein P (2018) Smoothing algorithm for stabilization of the material point method for fluid-solid interaction problems. Comput Methods Appl Mech Eng 342:177

    MathSciNet  Google Scholar 

  31. Kularathna S, Soga K (2017) Implicit formulation of material point method for analysis of incompressible materials. Comput Methods Appl Mech Eng 313:673–686

    MathSciNet  Google Scholar 

  32. Coombs WM, Charlton TJ, Cortis M, Augarde CE (2018) Overcoming volumetric locking in material point methods. Comput Methods Appl Mech Eng 333:1–21

    MathSciNet  Google Scholar 

  33. de Souza Neto E, Perić D, Dutko M, Owen D (1996) Design of simple low order finite elements for large strain analysis of nearly incompressible solids. Int J Solids Struct 33(20–22):3277–3296

    MathSciNet  MATH  Google Scholar 

  34. Wang D, Zhang H (2014) A consistently coupled isogeometric-meshfree method. Comput Methods Appl Mech Eng 268:843–870

    MathSciNet  MATH  Google Scholar 

  35. Valizadeh N, Bazilevs Y, Chen J, Rabczuk T (2015) A coupled iga-meshfree discretization of arbitrary order of accuracy and without global geometry parameterization. Comput Methods Appl Mech Eng 293:20–37

    MathSciNet  MATH  Google Scholar 

  36. Dolbow J, Belytschko T (1999) Volumetric locking in the element free galerkin method. Int J Numer Methods Eng 46(6):925–942

    MathSciNet  MATH  Google Scholar 

  37. Rabczuk T, Areias P, Belytschko T (2007) A simplified mesh-free method for shear bands with cohesive surfaces. Int J Numer Methods Eng 69(5):993–1021

    MATH  Google Scholar 

  38. Rabczuk T, Samaniego E (2008) Discontinuous modelling of shear bands using adaptive meshfree methods. Comput Methods Appl Mech Eng 197(6–8):641–658

    MathSciNet  MATH  Google Scholar 

  39. Ortiz-Bernardin A, Puso M, Sukumar N (2015) Improved robustness for nearly-incompressible large deformation meshfree simulations on delaunay tessellations. Comput Methods Appl Mech Eng 293:348–374

    MathSciNet  MATH  Google Scholar 

  40. Chen JS, Yoon S, Wang HP, Liu WK (2000) An improved reproducing kernel particle method for nearly incompressible finite elasticity. Comput Methods Appl Mech Eng 181(1–3):117–145

    MATH  Google Scholar 

  41. Chen JS, Wang HP, Yoon S, You Y (2000) Some recent improvements in meshfree methods for incompressible finite elasticity boundary value problems with contact. Comput Mech 25(2–3):137–156

    MATH  Google Scholar 

  42. Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for galerkin mesh-free methods. Int J Numer Methods Eng 50(2):435–466

    MATH  Google Scholar 

  43. Chen JS, Yoon S, Wu CT (2002) Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 53(12):2587–2615

    MATH  Google Scholar 

  44. Hillman M, Chen JS, Chi SW (2014) Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems. Comput Part Mech 1(3):245–256

    Google Scholar 

  45. Hillman M, Chen JS (2016) An accelerated, convergent, and stable nodal integration in galerkin meshfree methods for linear and nonlinear mechanics. Int J Numer Methods Eng 107(7):603–630

    MathSciNet  MATH  Google Scholar 

  46. Elmer W, Chen J, Puso M, Taciroglu E (2012) A stable, meshfree, nodal integration method for nearly incompressible solids. Finite Elements Anal Des 51:81–85

    Google Scholar 

  47. Simo JC, Hughes TJ (2006) Computational inelasticity, vol 7. Springer, Berlin

    MATH  Google Scholar 

  48. Chen JS, Hu W, Puso MA, Wu Y, Zhang X (2007) Strain smoothing for stabilization and regularization of Galerkin Meshfree methods. Springer, Berlin, pp 57–75. https://doi.org/10.1007/978-3-540-46222-4_4

  49. SIERRA Solid Mechanics Team: Sierra/SolidMechanics 4.50 user’s guide. Technical Report SAND2018-10673, Sandia National Laboratories (2018)

  50. Ostien J, Foulk J, Mota A, Veilleux M (2016) A 10-node composite tetrahedral finite element for solid mechanics. Int J Numer Methods Eng 107(13):1145–1170

    MathSciNet  MATH  Google Scholar 

  51. Gent A (1996) A new constitutive relation for rubber. Rubber Chem Technol 69(1):59–61

    Google Scholar 

  52. Horgan CO (2015) The remarkable gent constitutive model for hyperelastic materials. Int J Non-Linear Mech 68:9–16

    Google Scholar 

  53. Wilkins ML, Guinan MW (1973) Impact of cylinders on a rigid boundary. J Appl Phys 44(3):1200–1206

    Google Scholar 

Download references

Acknowledgements

The support of this work by Sandia National Laboratories via the Laboratory Directed Research and Development (LDRD) program, the Doctoral Study Program (DSP) and to University of California, San Diego, under Contract Agreement 1655264 is greatly acknowledged. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Moutsanidis.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moutsanidis, G., Koester, J.J., Tupek, M.R. et al. Treatment of near-incompressibility in meshfree and immersed-particle methods. Comp. Part. Mech. 7, 309–327 (2020). https://doi.org/10.1007/s40571-019-00238-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-019-00238-z

Keywords

Navigation