Skip to main content
Log in

Additive Manufacturing of Polymer-Based Composites Using Fused Filament Fabrication (FFF): a Review

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In this review paper, recent developments in the Fused Filament Fabrication (FFF) approach are provided for composite materials. Influencing parameters in FFF process such as road width, print speed, layer thickness, feed rate and build temperature of the model (both liquefier and envelope temperature), fiber orientation, the layer position, volume fraction, and infill orientation have been studied. These considered parameters in the strength/bonding or physicochemical characterizations of FFF-fabricated parts have been presented in detail. An overview of the mechanical properties of printed parts for different composite material systems is presented and discussed. Three types of reinforced polymers in FFF process have been considered: filled reinforced polymers, continuous fiber-reinforced polymers, and short fiber reinforced polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53

Similar content being viewed by others

References

  1. Durgun, I., & Ertan, R.: Experimental investigation of FDM process for improvement of mechanical properties and production cost. Rapid Prototyp. J. (2014)

  2. Górski, F., Kuczko, W.I.E.S.ŁA.W., Wichniarek, R.A.D.O.S.ŁA.W.: Impact strength of ABS parts manufactured using Fused Deposition Modeling technology. Archives of Mechanical Technology and Automation 31(1), 3–12 (2014)

    Google Scholar 

  3. Baich, L., Manogharan, G., Marie, H.: Study of infill print design on production cost-time of 3D printed ABS parts. Int. J. Rapid Manuf. 5(3–4), 308–319 (2015)

    Article  Google Scholar 

  4. Górski, F., Wichniarek, R., Kuczko, W., Andrzejewski, J.: Experimental determination of critical orientation of ABS parts manufactured using fused deposition modelling technology. J. Mach. Eng. 15(4), 121–132 (2015)

    Google Scholar 

  5. Cuan-Urquizo, E., Barocio, E., Tejada-Ortigoza, V., Pipes, R.B., Rodriguez, C.A., Roman-Flores, A.: Characterization of the mechanical properties of FFF structures and materials: A review on the experimental, computational and theoretical approaches. Materials 12(6), 895 (2019)

    Article  CAS  Google Scholar 

  6. Furlanello, F., Bertoldi, A., Dallago, M., Furlanello, C., Fernando, F., Inama, G., Chierchia, S.: Cardiac arrest and sudden death in competitive athletes with arrhythmogenic right ventricular dysplasia. Pacing Clin. Electrophysiol. 21(1), 331–335 (1998)

    Article  CAS  Google Scholar 

  7. Lee, B.H., Abdullah, J., Khan, Z.A.: Optimization of rapid prototyping parameters for production of flexible ABS object. J. Mater. Process. Technol. 169(1), 54–61 (2005)

    Article  CAS  Google Scholar 

  8. Sun, Q., Rizvi, G. M., Bellehumeur, C. T., & Gu, P.: Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp. J. (2008)

  9. Sood, A.K., Ohdar, R.K., Mahapatra, S.S.: Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater. Des. 31(1), 287–295 (2010)

    Article  CAS  Google Scholar 

  10. Fatimatuzahraa, A. W., Farahaina, B., & Yusoff, W. A. Y. (2011, September). The effect of employing different raster orientations on the mechanical properties and microstructure of Fused Deposition Modeling parts. In 2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA) (pp. 22–27).

  11. Croccolo, D., De Agostinis, M., Olmi, G.: Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30. Comput. Mater. Sci. 79, 506–518 (2013)

    Article  CAS  Google Scholar 

  12. Mahmood, S., Qureshi, A. J., Goh, K. L., & Talamona, D.: Tensile strength of partially filled FFF printed parts: experimental results. Rapid Prototyp. J. (2017)

  13. Raney, K., Lani, E., Kalla, D.K.: Experimental characterization of the tensile strength of ABS parts manufactured by fused deposition modeling process. Mater. Today: Proc. 4(8), 7956–7961 (2017)

    CAS  Google Scholar 

  14. Harris, M., Potgieter, J., Archer, R., Arif, K.M.: Effect of material and process specific factors on the strength of printed parts in fused filament fabrication: A review of recent developments. Materials 12(10), 1664 (2019)

    Article  CAS  Google Scholar 

  15. Fodran, E, Martin K, and Unny M.: "Mechanical and dimensional characteristics of fused deposition modeling build styles." 1996 International Solid Freeform Fabrication Symposium. (1996)

  16. Es-Said, O.S., Foyos, J., Noorani, R., Mendelson, M., Marloth, R., Pregger, B.A.: Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater. Manuf. Process. 15(1), 107–122 (2000)

    Article  CAS  Google Scholar 

  17. Rodríguez, J. F., Thomas, J. P., & Renaud, J. E.: Mechanical behavior of acrylonitrile butadiene styrene (ABS) fused deposition materials. Experimental investigation. Rapid Prototyp. J. (2001)

  18. Ahn, S. H., Montero, M., Odell, D., Roundy, S., & Wright, P. K.: Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. J. (2002)

  19. Sood, A.K., Ohdar, R.K., Mahapatra, S.S.: Experimental investigation and empirical modelling of FDM process for compressive strength improvement. J. Adv. Res. 3(1), 81–90 (2012)

    Article  CAS  Google Scholar 

  20. Ziemian, S., Okwara, M., & Ziemian, C. W.: Tensile and fatigue behavior of layered acrylonitrile butadiene styrene. Rapid Prototyp. J. (2015)

  21. Onwubolu, G. C., & Rayegani, F.: Characterization and optimization of mechanical properties of ABS parts manufactured by the fused deposition modelling process. Int. J. Manuf. Eng. (2014)

  22. Tymrak, B.M., Kreiger, M., Pearce, J.M.: Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mat. Des. 58, 242–246 (2014)

    Article  CAS  Google Scholar 

  23. Ebel, E., & Sinnemann, T.: Fabrication of FDM 3D objects with ABS and PLA and determination of their mechanical properties. RTejournal (1) (2014)

  24. Rankouhi, B., Javadpour, S., Delfanian, F., Letcher, T.: Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation. J. Fail. Anal. Prev. 16(3), 467–481 (2016)

    Article  Google Scholar 

  25. Letcher, T., Rankouhi, B., & Javadpour, S.: Experimental study of mechanical properties of additively manufactured ABS plastic as a function of layer parameters. In ASME International Mechanical Engineering Congress and Exposition (Vol. 57359, p. V02AT02A018). Am. Soc. Mech. Eng. (2015, November)

  26. Fernandez-Vicente, M., Calle, W., Ferrandiz, S., & Conejero, A.: Effect of infill parameters on tensile mechanical behavior in desktop 3D printing. 3D Print. Addit. Manuf. 3(3), 183–192 (2016)

  27. Alvarez, C., K. L., Lagos C, R. F., & Aizpun, M. : Investigating the influence of infill percentage on the mechanical properties of fused deposition modelled ABS parts. Ingeniería e Investigación 36(3), 110–116 (2016)

    Article  Google Scholar 

  28. Hernandez, R., Slaughter, D., Whaley, D., Tate, J., & Asiabanpour, B.: Analyzing the tensile, compressive, and flexural properties of 3D printed ABS P430 plastic based on printing orientation using fused deposition modeling. In 27th Annual International Solid Freeform Fabrication Symposium, Austin, TX. 939–950 (2016)

  29. Torrado, A.R., Roberson, D.A.: Failure analysis and anisotropy evaluation of 3D-printed tensile test specimens of different geometries and print raster patterns. J. Fail. Anal. Prev 16(1), 154–164 (2016)

    Article  Google Scholar 

  30. Cantrell, J. T., Rohde, S., Damiani, D., Gurnani, R., DiSandro, L., Anton, J., & Ifju, P. G.: Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Rapid Prototyp. J. (2017)

  31. Nikzad, M., Masood, S.H., Sbarski, I.: Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling. Mater. Des. 32(6), 3448–3456 (2011)

    Article  CAS  Google Scholar 

  32. Hwang, S., Reyes, E.I., Moon, K.S., Rumpf, R.C., Kim, N.S.: Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. J. Electron. Mater. 44(3), 771–777 (2015)

    Article  CAS  Google Scholar 

  33. Isakov, D.V., Lei, Q., Castles, F., Stevens, C.J., Grovenor, C.R.M., Grant, P.S.: 3D printed anisotropic dielectric composite with meta-material features. Mater. Des. 93, 423–430 (2016)

    Article  CAS  Google Scholar 

  34. Shemelya, C.M., Rivera, A., Perez, A.T., Rocha, C., Liang, M.I.N., Yu, X., Wicker, R.B.: Mechanical, electromagnetic, and X-ray shielding characterization of a 3D printable tungsten–polycarbonate polymer matrix composite for space-based applications. J. Electron. Mater. 44(8), 2598–2607 (2015)

    Article  CAS  Google Scholar 

  35. Boparai, K., Singh, R., Singh, H.: Comparison of tribological behaviour for Nylon6-Al-Al2O3 and ABS parts fabricated by fused deposition modelling: This paper reports a low cost composite material that is more wear-resistant than conventional ABS. Virtual Phys. Prototy. 10(2), 59–66 (2015)

    Article  Google Scholar 

  36. Matsuzaki, R., Ueda, M., Namiki, M., Jeong, T.K., Asahara, H., Horiguchi, K., Hirano, Y.: Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci. Rep. 6, 23058 (2016)

    Article  Google Scholar 

  37. Hao, W., Liu, Y., Zhou, H., Chen, H., Fang, D.: Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites. Polym. Test. 65, 29–34 (2018)

    Article  CAS  Google Scholar 

  38. Li, N., Li, Y., Liu, S.: Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. J. Mater. Process. Technol. 238, 218–225 (2016)

    Article  CAS  Google Scholar 

  39. Tian, X., Liu, T., Yang, C., Wang, Q., Li, D.: Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos. A: Appl. Sci. Manuf. 88, 198–205 (2016)

    Article  CAS  Google Scholar 

  40. Hao, W., Yuan, Y., Zhu, J., Chen, L.: Effect of impact damage on the curved beam interlaminar strength of carbon/epoxy laminates. J. Adhes Sci. Technol. 30(11), 1189–1200 (2016)

    Article  CAS  Google Scholar 

  41. Akhoundi, B., Behravesh, A.H., Bagheri Saed, A.: Improving mechanical properties of continuous fiber-reinforced thermoplastic composites produced by FDM 3D printer. J. Reinf Plast. Compos. 38(3), 99–116 (2019)

    Article  CAS  Google Scholar 

  42. Van Der Klift, F., Koga, Y., Todoroki, A., Ueda, M., Hirano, Y., Matsuzaki, R.: 3D printing of continuous carbon fibre reinforced thermo-plastic (CFRTP) tensile test specimens. Open J. Compos. Mater. 6(01), 18 (2016)

    Article  Google Scholar 

  43. Agarwal, K., Kuchipudi, S.K., Girard, B., Houser, M.: Mechanical properties of fiber reinforced polymer composites: A comparative study of conventional and additive manufacturing methods. J. Compos.Mater. 52(23), 3173–3181 (2018)

    Article  CAS  Google Scholar 

  44. Oztan, C., Karkkainen, R., Fittipaldi, M., Nygren, G., Roberson, L., Lane, M., Celik, E.: Microstructure and mechanical properties of three dimensional-printed continuous fiber composites. J. Compos. Mater. 53(2), 271–280 (2019)

    Article  CAS  Google Scholar 

  45. Dong, G., Tang, Y., Li, D., Zhao, Y.F.: Mechanical properties of continuous kevlar fiber reinforced composites fabricated by fused deposition modeling process. Procedia Manuf. 26, 774–781 (2018)

    Article  Google Scholar 

  46. Ning, F., Cong, W., Qiu, J., Wei, J., Wang, S.: Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. Part B Eng. 80, 369–378 (2015)

    Article  CAS  Google Scholar 

  47. van de Werken, N., Hurley, J., Khanbolouki, P., Sarvestani, A.N., Tamijani, A.Y., Tehrani, M.: Design considerations and modeling of fiber reinforced 3D printed parts. Compos. Part B Eng. 160, 684–692 (2019)

    Article  Google Scholar 

  48. N. Sarvestani, A., van de Werken, N., Khanbolouki, P., & Tehrani, M.: 3D printed composites with continuous carbon fiber reinforcements. In ASME International Mechanical Engineering Congress and Exposition (Vol. 58356, p. V002T02A031). American Society of Mechanical Engineers. (2007, November)

  49. Chen, Y., Rios, C.O., Imeri, A., Russell, N.A., Fidan, I.: Investigation of the tensile properties in fibre-reinforced additive manufacturing and fused filament fabrication. Int. J. Rapid Manuf. 9(2–3), 251–267 (2020)

    Article  Google Scholar 

  50. Imeri, A., Fidan, I., Allen, M., Perry, G.: Effect of fiber orientation in fatigue properties of FRAM components. Procedia Manuf. 26, 892–899 (2018)

    Article  Google Scholar 

  51. Dickson, A.N., Barry, J.N., McDonnell, K.A., Dowling, D.P.: Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Addit. Manuf. 16, 146–152 (2017)

    Article  CAS  Google Scholar 

  52. Chuncheng, Y.: 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance. Rapid Prototyp. J. 23(1), 209–215 (2017)

    Article  Google Scholar 

  53. Tian, X., Liu, T., Wang, Q., Dilmurat, A., Li, D., Ziegmann, G.: Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites. J. Clean. Prod. 142, 1609–1618 (2017)

    Article  CAS  Google Scholar 

  54. Melenka, G.W., Cheung, B.K., Schofield, J.S., Dawson, M.R., Carey, J.P.: Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures. Composite Structures 153, 866–875 (2016)

    Article  Google Scholar 

  55. Bettini, P., Alitta, G., Sala, G., Di Landro, L.: Fused deposition technique for continuous fiber reinforced thermoplastic. J. Mater. Eng. Perform. 26(2), 843–848 (2017)

    Article  CAS  Google Scholar 

  56. Zhong, W., Li, F., Zhang, Z., Song, L., Li, Z.: Short fiber reinforced composites for fused deposition modeling. Mater. Sci. Eng. A 301(2), 125–130 (2001)

    Article  Google Scholar 

  57. Tekinalp, H.L., Kunc, V., Velez-Garcia, G.M., Duty, C.E., Love, L.J., Naskar, A.K., Ozcan, S.: Highly oriented carbon fiber–polymer composites via additive manufacturing. Compos. Sci. Technol. 105, 144–150 (2014)

    Article  CAS  Google Scholar 

  58. Love, L.J., Kunc, V., Rios, O., Duty, C.E., Elliott, A.M., Post, B.K., Blue, C.A.: The importance of carbon fiber to polymer additive manufacturing. J. Mater. Res. 29(17), 1893 (2014)

    Article  CAS  Google Scholar 

  59. Yasa, E.: Anisotropic impact toughnness of chopped carbon fiber reinforced nylon fabricated by material-extrusion-based additive manufacturing. Anadolu University of Sciences & Technology-A: Applied Sciences & Engineering, 20(2) (2019)

  60. Carneiro, O.S., Silva, A.F., Gomes, R.: Fused deposition modeling with polypropylene. Mater. Des. 83, 768–776 (2015)

    Article  CAS  Google Scholar 

  61. Lewicki, J.P., Rodriguez, J.N., Zhu, C., Worsley, M.A., Wu, A.S., Kanarska, Y., Hensleigh, R.: 3D-printing of meso-structurally ordered carbon fiber/polymer composites with unprecedented orthotropic physical properties. Sci. Rep. 7(1), 1–14 (2017)

    Article  Google Scholar 

  62. Gupta, A., Fidan, I., Hasanov, S., Nasirov, A.: Processing, mechanical characterization, and micrography of 3D-printed short carbon fiber reinforced polycarbonate polymer matrix composite material. Int. J. Adv. Manuf. Technol. 107(7), 3185–3205 (2020)

    Article  Google Scholar 

  63. Hill, C., Rowe, K., Bedsole, R., Earle, J., & Kunc, V.: Materials and process development for direct digital manufacturing of vehicles. In SAMPE Long Beach 2016 Conference and Exhibition. (2016, May)

  64. Kunc, V. (2015, September). Advances and challenges in large scale polymer additive manufacturing. In Proceedings of the 15th SPE Automotive Composites Conference, Novi, MI, USA 9 (2015)

  65. Duty, C. E., Drye, T., & Franc, A.: Material development for tooling applications using big area additive manufacturing (BAAM) (No. ORNL/TM-2015/78). Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States). Manufacturing Demonstration Facility (MDF) (2015)

  66. Duty, C. E., Kunc, V., Compton, B., Post, B., Erdman, D., Smith, R., & Love, L.: Structure and mechanical behavior of Big Area Additive Manufacturing (BAAM) materials. Rapid Prototyp. J. (2017)

  67. Perez, A.R.T., Roberson, D.A., Wicker, R.B.: Erratum to: Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials. J. Fail. Anal. Prev. 14(4), 549–549 (2014)

    Article  Google Scholar 

  68. Shofner, M.L., Lozano, K., Rodríguez-Macías, F.J., Barrera, E.V.: Nanofiber-reinforced polymers prepared by fused deposition modeling. J. Appl. Polym. Sci. 89(11), 3081–3090 (2003)

    Article  CAS  Google Scholar 

  69. Ferreira, R.T.L., Amatte, I.C., Dutra, T.A., Bürger, D.: Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers. Compos. Part B Eng. 124, 88–100 (2017)

    Article  CAS  Google Scholar 

  70. Shofner, M. L., Rodriguez-Macias, F. J., Vaidyanathan, R., and Barrera, E. V.: “Single wall nanotube and vapor grown carbon fiber reinforced polymers processed by extrusion freeform fabrication,” Composites, Part A 34(12), 1207–1217 (2003)

  71. Compton, B.G., Lewis, J.A.: 3D-printing of lightweight cellular composites. Adv. Mater. 26(34), 5930–5935 (2014)

    Article  CAS  Google Scholar 

  72. Mahajan, C., & Cormier, D.: 3D printing of carbon fiber composites with preferentially aligned fibers. In IIE annual conference. Proceedings (p. 2953). Institute of Industrial and Systems Engineers (IISE). (2015)

  73. Gardner, J. M., Sauti, G., Kim, J. W., Cano, R. J., Wincheski, R. A., Stelter, C. J., & Siochi, E. J.: Additive manufacturing of multifunctional components using high density carbon nanotube yarn filaments. (2016)

  74. DeNardo, N. M.: Additive manufacturing of carbon fiber-reinforced thermoplastic composites. (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Ahmadifar or M. Shirinbayan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadifar, M., Benfriha, K., Shirinbayan, M. et al. Additive Manufacturing of Polymer-Based Composites Using Fused Filament Fabrication (FFF): a Review. Appl Compos Mater 28, 1335–1380 (2021). https://doi.org/10.1007/s10443-021-09933-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-021-09933-8

Keywords

Navigation