Skip to main content
Log in

Prediction of Process-Induced Distortions in L-Shaped Composite Profiles Using Path-Dependent Constitutive Law

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In this paper, the corner spring-in angles of AS4/8552 L-shaped composite profiles with different thicknesses are predicted using path-dependent constitutive law with the consideration of material properties variation due to phase change during curing. The prediction accuracy mainly depends on the properties in the rubbery and glassy states obtained by homogenization method rather than experimental measurements. Both analytical and finite element (FE) homogenization methods are applied to predict the overall properties of AS4/8552 composite. The effect of fiber volume fraction on the properties is investigated for both rubbery and glassy states using both methods. And the predicted results are compared with experimental measurements for the glassy state. Good agreement is achieved between the predicted results and available experimental data, showing the reliability of the homogenization method. Furthermore, the corner spring-in angles of L-shaped composite profiles are measured experimentally and the reliability of path-dependent constitutive law is validated as well as the properties prediction by FE homogenization method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Joven, R., Tavakol, B., Rodriguez, A., Guzman, M., Minaie, B.: Characterization of shear stress at the tool-part interface during autoclave processing of prepreg composites. J. Appl. Polym. Sci. 129(4), 2017–2028 (2013)

    Article  Google Scholar 

  2. Roozbehjavan, P., Tavakol, B., Ahmed, A., Koushyar, H., Das, R., Joven, R., Minaie, B.: Experimental and numerical study of distortion in flat, L-shaped, and U-shaped carbon fiber–epoxy composite parts. J. Appl. Polym. Sci. 131(13), n/a-n/a (2014)

  3. Mezeix, L., Seman, A., Nasir, M.N.M., Aminanda, Y., Rivai, A., Castanié, B., Olivier, P., Ali, K.M.: Spring-back simulation of unidirectional carbon/epoxy flat laminate composite manufactured through autoclave process. Compos. Struct. 124, 196–205 (2015)

    Article  Google Scholar 

  4. Kappel, E., Stefaniak, D., Fernlund, G.: Predicting process-induced distortions in composite manufacturing – a pheno-numerical simulation strategy. Compos. Struct. 120, 98–106 (2015)

    Article  Google Scholar 

  5. Bapanapalli, S.K., Smith, L.V.: A linear finite element model to predict processing-induced distortion in FRP laminates. Compos. A: Appl. Sci. Manuf. 36(12), 1666–1674 (2005)

    Article  Google Scholar 

  6. Radford, D.W., Rennick, T.S.: Separating sources of manufacturing distortion in laminated composites. J. Reinf. Plast. Compos. 19(8), 621–641 (2000)

    Article  Google Scholar 

  7. Arafath, A.R.A., Vaziri, R., Poursartip, A.: Closed-form solution for process-induced stresses and deformation of a composite part cured on a solid tool: part I – flat geometries. Compos. A: Appl. Sci. Manuf. 39(7), 1106–1117 (2008)

    Article  Google Scholar 

  8. Arafath, A.R.A., Vaziri, R., Poursartip, A.: Closed-form solution for process-induced stresses and deformation of a composite part cured on a solid tool: part II – curved geometries. Compos. A: Appl. Sci. Manuf. 40(10), 1545–1557 (2009)

    Article  Google Scholar 

  9. Kappel, E., Stefaniak, D., Holzhüter, D., Hühne, C., Sinapius, M.: Manufacturing distortions of a CFRP box-structure – a semi-numerical prediction approach. Compos. A: Appl. Sci. Manuf. 51, 89–98 (2013)

    Article  Google Scholar 

  10. Bogetti, T.A., Gillespie, J.W.: Process-induced stress and deformation in thick-section thermoset composite laminates. J. Compos. Mater. 26(5), 626–660 (1992)

    Article  Google Scholar 

  11. Kim, Y.K., White, S.R.: Process-induced stress relaxation analysis of AS4/3501-6 laminate. J. Reinf. Plast. Compos. 16(1), 2–16 (1997)

    Google Scholar 

  12. Johnston, A. A.: An integrated model of the development of process-induced deformation in autoclave processing of composite structures. Ph.D., The University of British Columbia (Canada) (1998)

  13. Baran, I., Tutum, C.C., Nielsen, M.W., Hattel, J.H.: Process induced residual stresses and distortions in pultrusion. Compos. Part B 51, 148–161 (2013)

    Article  Google Scholar 

  14. Magnus Svanberg, J., Anders Holmberg, J.: Prediction of shape distortions part I. FE-implementation of a path dependent constitutive model. Compos. A: Appl. Sci. Manuf. 35(6), 711–721 (2004)

    Article  Google Scholar 

  15. Baran, I., Akkerman, R., Hattel, J.H.: Modelling the pultrusion process of an industrial L-shaped composite profile. Compos. Struct. 118, 37–48 (2014)

    Article  Google Scholar 

  16. Baran, I., Hattel, J.H., Akkerman, R.: Investigation of process induced warpage for pultrusion of a rectangular hollow profile. Compos. Part B 68, 365–374 (2015)

    Article  Google Scholar 

  17. Ding, A., Li, S., Wang, J., Zu, L.: A three-dimensional thermo-viscoelastic analysis of process-induced residual stress in composite laminates. Compos. Struct. 129, 60–69 (2015)

    Article  Google Scholar 

  18. Baran, I., Hattel, J., Akkerman, R., Tutum, C.: Mechanical modelling of pultrusion process: 2D and 3D numerical approaches. Appl. Compos. Mater. 22(1), 99–118 (2015)

    Article  Google Scholar 

  19. Ersoy, N., Garstka, T., Potter, K., Wisnom, M.R., Porter, D., Stringer, G.: Modelling of the spring-in phenomenon in curved parts made of a thermosetting composite. Compos. A: Appl. Sci. Manuf. 41(3), 410–418 (2010)

    Article  Google Scholar 

  20. Çınar, K., Öztürk, U.E., Ersoy, N., Wisnom, M.R.: Modelling manufacturing deformations in corner sections made of composite materials. J. Compos. Mater. 48(7), 799–813 (2014)

    Article  Google Scholar 

  21. Svanberg, J., Altkvist, C., Nyman, T.: Prediction of shape distortions for a curved composite C-spar. J. Reinf. Plast. Compos. 24(3), 323–339 (2005)

    Article  Google Scholar 

  22. Hubert, P.: Aspects of flow and compaction of laminated composite shapes during cure. Text, (1996)

  23. Sorrentino, L., Bellini, C.: Compaction influence on spring-in of thin composite parts: experimental and numerical results. J. Compos. Mater. 49(17), 2149–2158 (2015)

    Article  Google Scholar 

  24. Chen, J., Hallett, S., Wisnom, M.R.: Modelling complex geometry using solid finite element meshes with correct composite material orientations. Comput. Struct. 88(9–10), 602–609 (2010)

    Article  Google Scholar 

  25. Darrow, D.A., Smith, L.V.: Isolating components of processing induced warpage in laminated composites. J. Compos. Mater. 36(21), 2407–2419 (2002)

    Article  Google Scholar 

  26. Johnston, A., Vaziri, R., Poursartip, A.: A plane strain model for process-induced deformation of laminated composite structures. J. Compos. Mater. 35(16), 1435–1469 (2001)

    Google Scholar 

  27. Garstka, T., Ersoy, N., Potter, K.D., Wisnom, M.R.: In situ measurements of through-the-thickness strains during processing of AS4/8552 composite. Compos. A: Appl. Sci. Manuf. 38(12), 2517–2526 (2007)

    Article  Google Scholar 

  28. Ersoy, N., Garstka, T., Potter, K., Wisnom, M.R., Porter, D., Clegg, M., Stringer, G.: Development of the properties of a carbon fibre reinforced thermosetting composite through cure. Compos. A: Appl. Sci. Manuf. 41(3), 401–409 (2010)

    Article  Google Scholar 

  29. Ersoy, N., Potter, K., Wisnom, M.R., Clegg, M.J.: An experimental method to study the frictional processes during composites manufacturing. Compos. A: Appl. Sci. Manuf. 36(11), 1536–1544 (2005)

    Article  Google Scholar 

  30. Ersoy, N., Potter, K., Wisnom, M.R., Clegg, M.J.: Development of spring-in angle during cure of a thermosetting composite. Compos. A: Appl. Sci. Manuf. 36(12), 1700–1706 (2005)

    Article  Google Scholar 

  31. Luciano, R., Barbero, E.J.: Formulas for the stiffness of composites with periodic microstructure. Int. J. Solids Struct. 31(21), 2933–2944 (1994)

    Article  Google Scholar 

  32. Ramm, E., Rank, E., Rannacher, R., Schweizerhof, K., Stein, E., Wendland, W., Wittum, G., Wriggers, P., Wunderlich, W.: Error-controlled adaptive finite elements in solid mechanics. John Wiley & Sons (2003)

  33. Barbero, E. J.: Finite element analysis of composite materials using AbaqusTM. CRC press (2013)

  34. Fernlund, G., Rahman, N., Courdji, R., Bresslauer, M., Poursartip, A., Willden, K., Nelson, K.: Experimental and numerical study of the effect of cure cycle, tool surface, geometry, and lay-up on the dimensional fidelity of autoclave-processed composite parts. Compos. A: Appl. Sci. Manuf. 33(3), 341–351 (2002)

    Article  Google Scholar 

  35. Kappel, E., Stefaniak, D., Hühne, C.: Process distortions in prepreg manufacturing – an experimental study on CFRP L-profiles. Compos. Struct. 106, 615–625 (2013)

    Article  Google Scholar 

  36. Sorrentino, L., Polini, W., Bellini, C.: To design the cure process of thick composite parts: experimental and numerical results. Adv. Compos. Mater. 23(3), 225–238 (2014)

    Article  Google Scholar 

  37. Sorrentino, L., Bellini, C.: In-process monitoring of cure degree by coplanar plate sensors. Int. J. Adv. Manuf. Technol. 1–9 (2016)

  38. Kappel, E.: Forced-interaction and spring-in – relevant initiators of process-induced distortions in composite manufacturing. Compos. Struct. 140, 217–229 (2016)

    Article  Google Scholar 

  39. Abdelal, G., Robotham, A., Cantwell, W.: Autoclave cure simulation of composite structures applying implicit and explicit FE techniques. Int. J. Mech. Mater. Des. 9(1), 55–63 (2013)

    Article  Google Scholar 

  40. Zhu, Q., Geubelle, P.H., Li, M., Tucker, C.L.: Dimensional accuracy of thermoset composites: simulation of process-induced residual stresses. J. Compos. Mater. 35(24), 2171–2205 (2001)

    Article  Google Scholar 

  41. Twigg, G., Poursartip, A., Fernlund, G.: Tool–part interaction in composites processing. Part I: experimental investigation and analytical model. Compos. A: Appl. Sci. Manuf. 35(1), 121–133 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work reported here was part of the Fundamental Research Funds for the Central Universities supported by Wuhan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuxin Li or Aiqing Ni.

Appendix

Appendix

The AS4 fiber mechanical properties are assumed to be transversely in the SCM. Thus five independent elastic constants for fiber are present, including Young’s modulus and the Poisson’s ratio in the transverse direction (E 22f and ν 23f ), Young’s modulus and the Poisson’s ratio in the longitudinal direction (E 11f and ν 12f ) and the shear modulus in the longitudinal direction (G 12f ). The SCM proposed by Bogetti and Gillesoie [10] are given as follows:

$$ \begin{array}{l}{E}_{11}={E}_{11f}{V}_f+{E}_r\left(1-{V}_f\right)+\left[\frac{4\left({\nu}_r-{\nu^2}_{12f}\right){k}_f{k}_r{G}_r\left(1-{V}_f\right){V}_f}{\left({k}_f+{G}_r\right){k}_r+\left({k}_f-{k}_r\right){G}_r{V}_f}\right]\\ {}{E}_{22}={E}_{33}=\frac{1}{{\left(4{k}_T\right)}^{-1}+{\left(4{G}_{23}\right)}^{-1}+\left({\nu}_{12}^2/{E}_{11}\right)}\\ {}{G}_{12}={G}_{13}={G}_r\left[\frac{\left({G}_{12f}+{G}_r\right)+\left({G}_{12f}-{G}_r\right){V}_f}{\left({G}_{12f}+{G}_r\right)-\left({G}_{12f}-{G}_r\right){V}_f}\right]\\ {}{G}_{23}=\frac{G_r\left[{k}_r\left({G}_r+{G}_{23f}\right)+2{G}_{23f}{G}_r+{k}_r\left({G}_{23f}-{G}_r\right){V}_f\right]}{k_r\left({G}_r+{G}_{23f}\right)++2{G}_{23f}{G}_r-\left({k}_r+2{G}_r\right)\left({G}_{23f}-{G}_r\right){V}_f}\\ {}{\nu}_{12}={\nu}_{13}={\nu}_{12f}{V}_f+{\nu}_r\left(1-{V}_f\right)+\left[\frac{\left({\nu}_r-{\nu}_{12f}\right)\left({k}_r-{k}_f\right){G}_r\left(1-{V}_f\right){V}_f}{\left({k}_f+{G}_r\right){k}_r+\left({k}_f-{k}_r\right){G}_r{V}_f}\right]\\ {}{\nu}_{23}=\frac{2{E}_{11}{k}_T-{E}_{11}{E}_{22}-4{\nu}_{12}^2{k}_T{E}_{22}}{2{E}_{11}{k}_T}\end{array} $$
(A.1)

where k f k r and k T are the isotropic plane strain bulk modulus for fiber, resin and composite materials, respectively. They can be defined by:

$$ \begin{array}{l}{k}_f=\frac{E_{11f}}{2\left(1-{\nu}_{12f}-2{\nu^2}_{12f}\right)}\kern1.50em \\ {}\kern0.5em {k}_{\mathrm{r}}=\frac{E_{\mathrm{r}}}{2\left(1-{\nu}_{\mathrm{r}}-2{\nu}_{\mathrm{r}}^2\right)}\kern1em \\ {}{k}_T=\frac{\left({k}_f+{G}_r\right){k}_{\mathrm{r}}+\left({k}_f-{k}_{\mathrm{r}}\right){G}_r{V}_f}{\left({k}_f+{G}_r\right)-\left({k}_f-{k}_{\mathrm{r}}\right){V}_f}\end{array} $$
(A.2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, A., Li, S., Wang, J. et al. Prediction of Process-Induced Distortions in L-Shaped Composite Profiles Using Path-Dependent Constitutive Law. Appl Compos Mater 23, 1027–1045 (2016). https://doi.org/10.1007/s10443-016-9501-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-016-9501-8

Keywords

Navigation