Skip to main content
Log in

Experimental and numerical investigation of reduction in shape distortion for angled composite parts

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Controlling the fabrication process induced shape distortion in composite parts is a concern of composite industry and relevant researchers in the recent year. This study focused on the numerical as well as experimental investigation of the effect of addition of silica microparticles on the mechanical properties and the cured shape of glass/vinyl ester angled composite parts. UD glass fabric/ vinyl ester laminated composite parts were fabricated without and with the addition of silica microparticles. The thermal and mechanical properties of resin samples containing silica particles were characterised using Dilatometer and Universal Testing Machine. It was found that the addition of silica microparticles has reduced the thermal expansion coefficients (CTE) and increased the modulus of resin. These thermal and mechanical properties were then used as matrix properties for three-phase composite laminated parts. The analytical micromechanical model was used to determine the thermomechanical properties of composite lamina. The numerical investigations of spring-in in angled composite parts were performed on commercial FEA software, COMSOL Multiphysics® (v5.4). The experimental results showed that the angled part without any fillers had a higher spring-in value of 1.807°, while the other part having 5% fillers exhibited a lower spring-in value of 0.632° only. The numerical results were found to be in close agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wenani M, Andersen L, Horlyk P, Nielsen MW (2012) Prediction of process induced shape distortions and residual stresses in large - with application to wind turbine blades. Technical University of Denmark

  2. Haghshenas SM, Vaziri R, Poursartip A (2018) Integration of resin flow and stress development in process modelling of composites: part I – isotropic formulation. J Compos Mater 52(23):002199831876229. https://doi.org/10.1177/0021998318762295

    Article  Google Scholar 

  3. Nawab Y, Tardif X, Boyard N, Sobotka V, Casari P, Jacquemin F (2012) Determination and modelling of the cure shrinkage of epoxy vinylester resin and associated composites by considering thermal gradients. Compos Sci Technol 73:81–87

    Article  Google Scholar 

  4. Wijskamp S (2005) Shape distortions in composites forming. University of Twente

  5. Wisnom MR, Gigliotti M, Ersoy N, Campbell M, Potter KD (2006) Mechanisms generating residual stresses and distortion during manufacture of polymer–matrix composite structures. Compos Part A Appl Sci Manuf 37(4):522–529. https://doi.org/10.1016/j.compositesa.2005.05.019

    Article  Google Scholar 

  6. Kim H-S, Yoo S-H, Chang S-H (2013) In situ monitoring of the strain evolution and curing reaction of composite laminates to reduce the thermal residual stress using FBG sensor and dielectrometry. Compos Part B Eng 44(1):446–452

    Article  Google Scholar 

  7. Albert C, Fernlund G (2002) Spring-in and warpage of angled composite laminates. Compos Sci Technol 62(14):1895–1912

    Article  Google Scholar 

  8. Ali M, Nawab Y, Saouab A, Anjum AS, Zeeshan M (2017) Fabrication induced spring-back in thermosetting woven composite parts with variable thickness. J Ind Text 152808371668693(6). https://doi.org/10.1177/1528083716686939

  9. Potter KD, Campbell M, Langer C, Wisnom MR (2005) The generation of geometrical deformations due to tool/part interaction in the manufacture of composite components. Compos Part A Appl Sci Manuf 36(2):301–308. https://doi.org/10.1016/j.compositesa.2004.06.002

    Article  Google Scholar 

  10. Parlevliet PP, Bersee HEN, Beukers A (2006) Residual stresses in thermoplastic composites—a study of the literature—part I: formation of residual stresses. Compos Part A Appl Sci Manuf 37(11):1847–1857. https://doi.org/10.1016/j.compositesa.2005.12.025

    Article  Google Scholar 

  11. Nawab Y, Park CH, Saouab A, Agogué R, Beauchêne P, Desjoyaux B (2014) Shape distortion of carbon/epoxy composite parts during fabrication. Macromol Symp 340(1):59–64. https://doi.org/10.1002/masy.201300124

    Article  Google Scholar 

  12. Stavrovsky V, Ruzicka M, Padovec Z, Chlup H (2011) Thermal and mechanical behaviour of the angle section of the composite with a single and double curvature. In: 18th international conference on composite materials, Jeju Island, Korea, pp 1–6

  13. Jain LK, Lutton BG, Mai Y, Paton R (1997) Stresses and deformations induced during manufacturing. Part II: a study of the spring in phenamenon. J Compos Mater 31(7):696–719. https://doi.org/10.1177/002199839703100704

    Article  Google Scholar 

  14. Kappel E, Stefaniak D, Hühne C (2013) Process distortions in prepreg manufacturing – an experimental study on CFRP L-profiles. Compos Struct 106:615–625. https://doi.org/10.1016/J.COMPSTRUCT.2013.07.020

    Article  Google Scholar 

  15. Hubert P, Poursartip A (2001) Aspects of the Compaction of Composite Angle Laminates: An Experimental Investigation. J Compos Mater 35:2–26. https://doi.org/10.1177/002199801772661849

    Article  Google Scholar 

  16. Composites TP (1999) An investigation of cure induced stresses in low cure temprature thermoset polymer composites. J Reinf Plast Compos 18(14):1304–1321. https://doi.org/10.1177/073168449901801403

    Article  Google Scholar 

  17. Kappel E (2015) Spring-in of curved CFRP/foam-core sandwich structures. Compos Struct 128:155–164. https://doi.org/10.1016/j.compstruct.2015.03.058

    Article  Google Scholar 

  18. Ding A, Li S, Sun J, Wang J, Zu L (2016) A comparison of process-induced residual stresses and distortions in composite structures with different constitutive laws. J Reinf Plast Compos 35(10):807–823. https://doi.org/10.1177/0731684416629764

    Article  Google Scholar 

  19. Fiorina M, Seman A, Castanie B, Ali KM, Schwob C, Mezeix L (2017) Spring-in prediction for carbon/epoxy aerospace composite structure. Compos Struct 168:739–745. https://doi.org/10.1016/j.compstruct.2017.02.074

    Article  Google Scholar 

  20. Hajbarati H, Zajkani A (2019) A novel analytical model to predict springback of DP780 steel based on modified Yoshida-Uemori two-surface hardening model. Int J Mater Form 12(3):441–455. https://doi.org/10.1007/s12289-018-1427-2

    Article  Google Scholar 

  21. Raza M, Shaker K, Nawab Y, Saouab A (2019) Reduction in process-induced shape distortion of C-shaped composite parts using micro silica particles. Int J Adv Manuf Technol 103(9-12). https://doi.org/10.1007/s00170-019-03981-y

  22. Suresha B, Chandramohan G (2008) Three-body abrasive wear behaviour of particulate-filled glass-vinyl ester composites. J Mater Process Technol 200(1-3):306–311. https://doi.org/10.1016/j.jmatprotec.2007.09.035

    Article  Google Scholar 

  23. Zhu J, Imam A, Crane R et al (2007) Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength. Compos Sci Technol 67(7-8):1509–1517. https://doi.org/10.1016/j.compscitech.2006.07.018

    Article  Google Scholar 

  24. Chandradass J, Kumar MR, Velmurugan R (2007) Effect of nanoclay addition on vibration properties of glass fibre reinforced vinyl ester composites. Mater Lett 61(22):4385–4388. https://doi.org/10.1016/j.matlet.2007.02.009

    Article  Google Scholar 

  25. Dittanet P, Pearson RA (2012) Effect of silica nanoparticle size on toughening mechanisms of filled epoxy. Polymer (Guildf) 53(9):1890–1905. https://doi.org/10.1016/j.polymer.2012.02.052

    Article  Google Scholar 

  26. Nawab Y, Jaquemin F, Casari P, Boyard N, Sobotka V (2012) Evolution of chemical and thermal curvatures in thermoset-laminated composite plates during the fabrication process. J Compos Mater 47(3):327–339. https://doi.org/10.1177/0021998312440130

    Article  Google Scholar 

  27. Lee E, Lee S, Shanefieldz DJ, Cannonw WR (2008) Enhanced thermal conductivity of polymer matrix composite via high solids loading of aluminum nitride in epoxy resin. J Am Ceram Soc 91(4):1169–1174. https://doi.org/10.1111/j.1551-2916.2008.02247.x

    Article  Google Scholar 

  28. Kroner E (1958) Calculation of the elastic constants of the multicrystal from the constants of the single crystal. J Phys A Hadron Nucl 151(4):504–518. https://doi.org/10.1007/BF01337948

    Article  Google Scholar 

  29. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc A Math Phys Eng Sci 241(1226):376–396. https://doi.org/10.1098/rspa.1957.0133

    Article  MathSciNet  MATH  Google Scholar 

  30. Jacquemin F, Freour S, Guillen R (2005) A Hygroelastic self-consistent model for Fiber-reinforced Composites. J Reinf Plast Compos 24(5):485–502. https://doi.org/10.1177/0731684405045014

    Article  Google Scholar 

  31. Msallem YA, Jacquemin F, Poitou A (2010) Residual stresses formation during the manufacturing process of epoxy matrix composites: resin yield stress and anisotropic chemical shrinkage. Int J Mater Form 3(S2):1363–1372. https://doi.org/10.1007/s12289-010-0688-1

    Article  Google Scholar 

  32. Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos Part B Eng 39(6):933–961. https://doi.org/10.1016/j.compositesb.2008.01.002

    Article  Google Scholar 

  33. Shaker K, Nawab Y, Saouab A, Ashraf M (2018) Effect of silica particle loading on shape distortion in glass / vinyl ester-laminated composite plates. J Text Inst 109(5):656–664. https://doi.org/10.1080/00405000.2017.1363932

    Article  Google Scholar 

  34. Shunmugasamy VC, Pinisetty D, Gupta N (2012) Thermal expansion behavior of hollow glass particle/vinyl ester composites. J Mater Sci 47(14):5596–5604. https://doi.org/10.1007/s10853-012-6452-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Nawab.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaker, K., Nawab, Y. & Saouab, A. Experimental and numerical investigation of reduction in shape distortion for angled composite parts. Int J Mater Form 13, 897–906 (2020). https://doi.org/10.1007/s12289-019-01510-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-019-01510-6

Keywords

Navigation