Skip to main content

Advertisement

Log in

Creep Behavior in Interlaminar Shear of a SiC/SiC Ceramic Composite with a Self-healing Matrix

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Creep behavior in interlaminar shear of a non-oxide ceramic composite with a multilayered matrix was investigated at 1,200 °C in laboratory air and in steam environment. The composite was produced via chemical vapor infiltration (CVI). The composite had an oxidation inhibited matrix, which consisted of alternating layers of silicon carbide and boron carbide and was reinforced with laminated Hi-Nicalon™ fibers woven in a five-harness-satin weave. Fiber preforms had pyrolytic carbon fiber coating with boron carbide overlay applied. The interlaminar shear properties were measured. The creep behavior was examined for interlaminar shear stresses in the 16–22 MPa range. Primary and secondary creep regimes were observed in all tests conducted in air and in steam. In air and in steam, creep run-out defined as 100 h at creep stress was achieved at 16 MPa. Larger creep strains were accumulated in steam. However, creep strain rates and creep lifetimes were only moderately affected by the presence of steam. The retained properties of all specimens that achieved run-out were characterized. Composite microstructure, as well as damage and failure mechanisms were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Brewer, D.: HSR/EPM combustor materials development program. Mater Sci Eng A A261, 284–291 (1999)

    Article  Google Scholar 

  2. Brewer, D., Ojard, G., Gibler, M., “Ceramic matrix composite combustor liner rig test,” ASME Turbo Expo 2000, Munich Germany, May 8–11, 2000, ASME Paper 2000-GT-0670.

  3. Corman, G.S., Luthra, K.: Silicon melt infiltrated ceramic composites (HiPerComp). In: Bansal, N. (ed.) Hand book of ceramic composites, pp. 99–115. Kluwer Academic, NY (2005)

    Chapter  Google Scholar 

  4. Morscher, G.N., Ojard, G., Miller, R., Gowayed, Y., Santhosh, U., Ahmad, J., John, R.: Tensile creep and fatigue of Sylramic-iBN melt-infiltrated SiC matrix composites: retained properties, damage development, and failure mechanisms. Compos Sci Technol 68, 3305–3313 (2008)

    Article  Google Scholar 

  5. McNulty, J.C., He, M.Y., Zok, F.W.: Notch sensitivity of fatigue life in a Sylramic™/SiC composite at elevated temperature. Compos Sci Technol 61, 1331–1338 (2001)

    Article  Google Scholar 

  6. Prewo, K.M., Batt, J.A.: The oxidative stability of carbon fibre reinforced glass-matrix composites. J Mater Sci 23, 523–527 (1988)

    Article  Google Scholar 

  7. Mah, T., Hecht, N.L., McCullum, D.E., Hoenigman, J.R., Kim, H.M., Katz, A.P., Lipsitt, H.A.: Thermal stability of SiC fibres (Nicalon). J Mater Sci 19, 1191–1201 (1984)

    Article  Google Scholar 

  8. Heredia, F.E., McNulty, J.C., Zok, F.W., Evans, A.G.: An oxidation embrittlement probe for ceramic matrix composites. J Am Ceram Soc 78, 2097–2100 (1995)

    Article  Google Scholar 

  9. More, K.L., Tortorelli, P.F., Ferber, M.K., Keiser, J.R.: Observations of accelerated silicon carbide recession by oxidation at high water-vapor pressures. J Am Ceram Soc 83(1), 211–213 (2000)

    Article  Google Scholar 

  10. Naslain, R.: Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos Sci Technol 64, 155–170 (2004)

    Article  Google Scholar 

  11. Naslain, R., Pailler, R., Lamon, J.: Single- and multilayered interphases in SiC/SiC composites exposed to severe environmental conditions: an overview. Int J Appl Ceram Technol 7(3), 263–275 (2010)

    Article  Google Scholar 

  12. Naslain, R.: SiC-matrix composites: nonbrittle ceramics for thermostructural applications. Int J Appl Ceram Technol 2(2), 75–84 (2005)

    Article  Google Scholar 

  13. Lamouroux, F., Bertrand, S., Pailler, R., Naslain, R., Cataldi, M.: Oxidation-resistant carbon fiber reinforced ceramic-matrix composites. Compos Sci Technol 59, 1073–1085 (1999)

    Article  Google Scholar 

  14. Lamouroux, F., Bertrand, S., Pailler, R., Naslain, R.: A multilayer ceramic matrix for oxidation resistant carbon fibers-reinforced CMCs. Key Eng Mater 164–165, 365–368 (1999)

    Article  Google Scholar 

  15. Darzens, S., Farizy, G., Vicens, J., Chermant, J.L., et al.: Multiscale investigation of the creep behavior of SiCf-SiBC. In: Krenkel, W. (ed.) High temperature ceramic matrix composites, pp. 211–217. Wiley-VCH, Weinheim (2001)

    Google Scholar 

  16. Quemard, L., Rebillat, F., Guette, A., Tawil, H., Louchet-Pouillerie, C.: Self-healing mechanisms of a SiC fiber reinforced multi-layered ceramic matrix composite in high pressure steam environments. J Eur Ceram Soc 27, 2085–2094 (2007)

    Article  Google Scholar 

  17. Zhu, S., Mizuno, M., Kagawa, Y., Cao, J., Nagano, Y., Kaya, H.: Creep and fatigue behavior in Hi-Nicalon™-fiber-reinforced silicon carbide composites at high temperatures. J Am Ceram Soc 82(1), 117–128 (1999)

    Article  Google Scholar 

  18. Zhu, S., Mizuno, M., Kagawa, Y., Mutoh, Y.: Monotonic tension, fatigue and creep behavior of SiC-fiber-reinforced SiC-matrix composites: a review. Compos Sci Technol 59, 833–851 (1999)

    Article  Google Scholar 

  19. Chermant, J., Boitier, G., Darzens, S., Farizy, G., Vicens, J.C., Sangleboeuf, J.: The creep mechanism of ceramic matrix composites at low temperature and stress, by a materials science approach. J Eur Ceram Soc 22, 2443–2460 (2002)

    Article  Google Scholar 

  20. Ruggles-Wrenn, M.B., Christensen, D.T., Chamberlain, A.L., Lane, J.E., Cook, T.S.: Effect of frequency and environment on fatigue behavior of a CVI SiC/SiC ceramic matrix composite at 1200 °C. Compos Sci Technol 71(2), 190–196 (2011)

    Article  Google Scholar 

  21. Carrere, P., Lamon, J.: Fatigue behavior at high temperature in air of a 2D woven SiC/SiBC with a self healing matrix. Key Eng Mater 164–165, 321–324 (1999)

    Article  Google Scholar 

  22. Reynaud, P., Rouby, D., Fantozzi, G.: Cyclic fatigue behavior at high temperature of a self-healing ceramic matrix composite. Ann Chim Sci Mat 30(6), 649–658 (2005)

    Article  Google Scholar 

  23. Darzens, S., Chermant, J.L., Vicens, J., Sangleboeuf, J.C.: Understanding of the creep behavior of SiCf–SiBC composites. Scr Mater 47, 433–439 (2002)

    Article  Google Scholar 

  24. Carrere, P., Lamon, J.: Creep behavior of a SiC/Si-B-C composite with a self healing matrix. J Eur Ceram Soc 23, 1105–1114 (2003)

    Article  Google Scholar 

  25. Ruggles-Wrenn, M.B., Delapasse, J., Chamberlain, A.L., Lane, J.E., Cook, T.S.: Fatigue behavior of a Hi-Nicalon™/SiC-B4C composite at 1200 °C in air and in steam. Mater Sci Eng A 534, 119–128 (2012)

    Article  Google Scholar 

  26. Ruggles-Wrenn, M.B., Jones, T.P.: Tension-compression fatigue behavior of a SiC/SiC ceramic matrix composite at 1200 °C in air and in steam. Int J Fatigue 47, 154–160 (2013)

    Article  Google Scholar 

  27. Ruggles-Wrenn, M.B., Kurtz, G.: Notch sensitivity of fatigue behavior of a Hi-Nicalon™/SiC-B4C composite at 1200 °C in air and in steam. Appl Compos Mater 20, 891–905 (2013)

    Article  Google Scholar 

  28. Choi, S.R., Kowalik, R.W., Alexander, D.J., Bansal, N.P.: Assessments of the life limiting behavior in interlaminar shear for Hi-Nic SiC/SiC ceramic matrix composite at elevated temperature. Ceram Eng Sci Proc 28(2), 179–189 (2007)

    Google Scholar 

  29. Choi, S.R., Bansal, N.P.: Interlaminar tension/shear properties and stress rupture in shear of various continuous fiber-reinforced ceramic matrix composites. Ceram Trans 175, 119–134 (2006)

    Google Scholar 

  30. Choi, S.R., Bansal, N.P.: Shear strength as a function of test rate for SiCf/BSAS ceramic matrix composite at elevated temperature. J Am Ceram Soc 87(10), 912–918 (2004)

    Google Scholar 

  31. Choi, S.R., Bansal, N.P., Calomino, A.M., Verrilli, M.J.: Shear strength behavior of ceramic matrix composites at elevated temperature. Ceram Trans 165, 131–145 (2005)

    Google Scholar 

  32. Choi, S.R., Kowalik, R.W., Alexander, D.J., Bansal, N.P.: Elevated-temperature stress rupture in interlaminar shear of a Hi-Nic SiC/SiC ceramic matrix composite. Compos Sci Technol 59, 890–897 (2009)

    Article  Google Scholar 

  33. Ruggles-Wrenn, M.B., Laffey, P.D.: Creep behavior in interlaminar shear of a Nextel™720/alumina ceramic composite at elevated temperature in air and in steam. Compos Sci Technol 68(10–11), 2260–2266 (2008)

    Article  Google Scholar 

  34. ASTM C 1425, “Test method for interlaminar shear strength of 1-D and 2-D continuous fiber-reinforced advanced ceramics at elevated temperatures”, vol. 15.01. West Conshohocken PA, Annual book of ASTM Standards. 2006.

Download references

Acknowledgment

The authors would like to thank Dr. A. L. Chamberlain, Dr. J. E. Lane, and Dr. T. S. Cook (Rolls-Royce, Indianapolis, IN) for providing the test material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Ruggles-Wrenn.

Additional information

The views expressed are those of the authors and do not reflect the official policy or position of the United States Air Force, Department of Defense or the U. S. Government.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruggles-Wrenn, M.B., Pope, M.T. Creep Behavior in Interlaminar Shear of a SiC/SiC Ceramic Composite with a Self-healing Matrix. Appl Compos Mater 21, 213–225 (2014). https://doi.org/10.1007/s10443-013-9366-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-013-9366-z

Keywords

Navigation