Skip to main content
Log in

Experimental and Numerical Investigation of Metal Type and Thickness Effects on the Impact Resistance of Fiber Metal Laminates

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The impact response of fiber metal laminates (FMLs), has been investigated with experiments and numerical simulations, which is reported in this article. Low-velocity impacts were carried out to study the effects of metal type and thickness within FMLs. Glare5-3/2 laminates with two aluminum layer thicknesses and a similar FML containing magnesium sheets were impacted by drop weight tests. Also, a major part of this study was to accomplish a dynamic non-linear transient analysis to study the impact response of FMLs using the commercial finite element (FE) analysis code ABAQUS. By reviewing different approaches of modeling constituents of an FML, it is shown that the appropriate selection of elements has more significant role than failure criterion to predict acceptable results for this type of laminate and loading. The good agreement obtained between experimental and numerical results verifies the possibility of relatively simpler simulation by FE-analysis to predict overall response of FMLs under impact loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Vlot, A., Gunnink, J.W. (eds.): Fiber metal laminates – an introduction. Kluwer Academic Publisher, Dordrecht (2001)

    Google Scholar 

  2. Vlot, A.: Glare. Kluwer Academic Publisher, Dordrecht (2001)

    Google Scholar 

  3. Vlot, A.: Impact tests on aluminium 2024-T3, Aramid and glass reinforced laminates and thermoplastic composites. Delft Univ. of Technology, Delft (1987). Report LR-534

    Google Scholar 

  4. Liu, Y., Liaw, B.: Effects of constituents and lay-up configuration on drop- weight tests of fiber -metal laminates. Appl. Comp. Mater. 17, 43–62 (2010)

    Article  Google Scholar 

  5. Cortes, P., Cantwell, W.J.: Fracture properties of a fiber-metal laminates based on magnesium alloy. J. Materials Science 39, 1081–1083 (2010)

    Article  Google Scholar 

  6. Cortes, P., Cantwell, W.J.: The fracture properties of a fiber-metal laminate based on magnesium alloy. Composites Part B: Engineering 37, 163–170 (2006)

    Article  Google Scholar 

  7. Supplit, R., Koch, T., Schubert, U.: Evaluation of the anti-corrosive effect of acid picking and sol-gel coating on magnesium AZ31 alloy. Corros. Sci. 49, 3015–3023 (2007)

    Article  CAS  Google Scholar 

  8. Alderliesten, R.C., Rans, C., Benedictus, R.: The applicability of magnesium based fiber metal laminates in aerospace structures. Composite Science and Technology 68, 2983–2993 (2008)

    Article  CAS  Google Scholar 

  9. Fan, J., Cantwell, W.J., Guan, Z.W.: The low –velocity impact response of fiber -metal laminates. J. Reinforced Plastics Composites, 1–10 (2010)

  10. Vlot, A.: Low velocity impact loading on fiber reinforced aluminium laminates (Arall and Glare) and other aircraft sheet materials. Delft Univ. of Technology, Delft (1993). Rept. LR-718

    Google Scholar 

  11. Liaw, B.M., Liu, Y.X., Villars, E.A.: Impact damage mechanisms in fiber-metal laminates, Proceedings of the SEM Annual Conference on Experimental and Applied Mechanics, Portland, Oregon, June 4-6 (2001)

  12. Vlot, A.: Impact loading on fiber metal laminates. Int. J. Impact Engng 18(3), 291–307 (1996)

    Article  Google Scholar 

  13. Caprino, G., Spataro, G., Del Luongo, S.: Low-velocity impact behaviour of fiberglass-aluminium laminates. Composites Part A: Applied Science Manufacturing 35, 605–616 (2004)

    Article  Google Scholar 

  14. Reyes, G., Cantwell, W.J.: The mechanical properties of fiber-metal laminates based on glass fiber reinforced polypropylene. Composite Science Technology 60, 1085–1094 (2000)

    Article  Google Scholar 

  15. Abdullah, M.R., Cantwell, W.J.: The impact resistance of propylene- based fiber-metal laminates. Compos. Sci. Technol. 66, 1682–1693 (2006)

    Article  CAS  Google Scholar 

  16. Cortes, P., Cantwell, W.J.: The impact properties of high-temperature fiber- metal laminates. J. Composite Materials 41(5), 613–632 (2007)

    Article  CAS  Google Scholar 

  17. Vlot, A., Krull, M.: Impact damage resistance of various fiber metal laminates. J. Phys IV France 7, 1045–1050 (1997)

    Article  Google Scholar 

  18. McKown, S., Cantwell, W.J., Jones, N.: Investigation of scaling effects in fiber- metal laminates. J. Composite Materials 42(9), 865–888 (2008)

    Article  CAS  Google Scholar 

  19. Carrillo, J.G., Cantwell, W.J.: Scaling effects in the low velocity impact response of fiber – metal laminates. J. Reinforced Plastics Composites 27(9), 893–907 (2008)

    Article  CAS  Google Scholar 

  20. Liu, Y.X., Liaw, B.M.: Drop – weight impact on fiber – metal laminates using various indenters. Proceeding of the SEM International Congress & Exposition on Experimental and Applied Mechanics, Costa Mesa, CA, June 7–10 (2004)

  21. Laliberte, J.F., Straznicky, P.V., Poon, C.: Impact damage in fiber metal laminates, Part1: Experiment. AIAA J. 43(11), 2445–2453 (2005)

    Article  Google Scholar 

  22. Laliberte, J., Poon, C., Straznicky, P.V.: Numerical modeling of low-velocity impact damage in fiber-metal laminates, ICAS 2002 Congress (The International Council of the Aeronautical Sciences Congress), Toronto, Canada (2002)

  23. Guan, Z.W., Cantwell, W.J., Abdullah, R.: Numerical modeling of the impact response of fiber-metal laminates. Polymer Composites, 603-611 (2009)

  24. Song, S.H., Byun, Y.S., Ku, T.W., Song, W.J., Kim, J., Kang, B.S.: Experimental and numerical investigation on impact performance of carbon reinforced aluminum laminates. J. Mater. Sci. Technol. 26(4), 327–332 (2010)

    Article  CAS  Google Scholar 

  25. Seo, H., Hundley, J., Hahn, H.T., Yang, J.M.: Numerical simulation of glass – fiber- reinforced aluminum laminates with diverse impact damage. AIAA J. 48(3), 676–687 (2010)

    Article  CAS  Google Scholar 

  26. McCarthy, M.A., Xiao, J.R., Petrinic, N., Kamoulakos, A., Melito, V.: Modeling bird impacts on an aircraft wing – part1: material modeling of the fiber metal laminate leading edge material with continuum damage mechanics. Int. J. Crashworthiness 10(1), 41–49 (2005)

    Article  Google Scholar 

  27. Hashagen, F.: Numerical analysis of failure mechanisms in fiber metal laminates, PhD Thesis, Delft University of Technology (1998)

  28. Linde, P., Pleitner, J., de Boer, H., Carmone, C.: Modeling and simulation of fiber metal laminates, ABAQUS Users’ Conference, Boston, Massachusetts (2004)

  29. Hagenbeek, M.: Characterisation of fibre metal laminates under thermomechanical loadings, PhD Dissertation, TUDelft, The Netherlands (2005)

  30. Agnew, S.R., Duygulu, O.: Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int. J. Plasticity 21, 1161–1193 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sadighi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadighi, M., Pärnänen, T., Alderliesten, R.C. et al. Experimental and Numerical Investigation of Metal Type and Thickness Effects on the Impact Resistance of Fiber Metal Laminates. Appl Compos Mater 19, 545–559 (2012). https://doi.org/10.1007/s10443-011-9235-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-011-9235-6

Keywords

Navigation