Skip to main content
Log in

Effects of Constituents and Lay-up Configuration on Drop-Weight Tests of Fiber-Metal Laminates

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Impact responses and damage of various fiber-metal laminates were studied using a drop-weight instrument with the post-impact damage characteristics being evaluated through ultrasonic and mechanical sectioning techniques. The first severe failure induced by the low-velocity drop-weight impact occurred as delamination between the aluminum and fiber-epoxy layers at the non-impact side. It was followed by a visible shear crack in the outer aluminum layer on the non-impact face. Through-thickness shear cracks in the aluminum sheets and severe damage in the fiber laminated layers (including delamination between adjacent fiber-epoxy laminae with different fiber orientations) developed under higher energy impacts. The impact properties of fiber-metal laminates varied with different constituent materials and fiber orientations. Since it was punched through easily, the aramid-fiber reinforced fiber-metal laminates (ARALL) offered poorer impact resistance than the glass-fiber reinforced fiber-metal laminates (GLARE). Tougher and more ductile aluminum alloys improved the impact resistance. GLARE made of cross-ply prepregs provided better impact resistance than GLARE with unidirectional plies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Vlot, A., Gunnink, J.W. (eds.): Fiber Metal Laminates, an Introduction. Kluwer Academic Publishers, Dordrecht, The Netherlands (2001)

    Google Scholar 

  2. Vermeeren, C.A.J.R.: An historic overview of the development of fibre metal laminates. Appl. Compos. Mater. 10, 189–205 (2003)

    Article  CAS  ADS  Google Scholar 

  3. Vermeeren, C.A.J.R., Beumler, Th, De Kanter, J.L.C.G., Van Der Jagt, O.C., Out, B.C.L.: Glare design aspects and philosophies. Appl. Compos. Mater. 10, 257–276 (2003)

    Article  CAS  ADS  Google Scholar 

  4. Lawcock, G., Ye, L., Mai, Y.W.: Novel fiber reinforced metal laminates for aerospace applications — a review: Part I — background and general mechanical properties. SAMPE Journal 31, 23–31 (1995)

    CAS  Google Scholar 

  5. Schijve, J., Van Lipzig, H.T.M., Van Gestel, G.F.J.A., Hoeymakers, A.H.W.: Fatigue properties of adhesively-bonded laminated sheet materials of aluminum alloys. Eng. Fract. Mech. 12, 561–579 (1979)

    Article  CAS  Google Scholar 

  6. Marissen R., Vogelesang L.B.: Development of a new hybrid material: ARALL. In: Proceedings of the Second International SAMPE European Conference, Cannes, Frances, pp. 113–122 (1981)

  7. Vogelesang, L.B., Vlot, A.: Development of fibre metal laminates for advanced aerospace structures. J. Mater. Process. Technol. 103, 1–5 (2000)

    Article  Google Scholar 

  8. Alderliesten, R., Rans, C.: The meaning of threshold fatigue in fibre metal laminates. Int. J. Fatigue 31, 213–222 (2009)

    Article  Google Scholar 

  9. Sun, C.T., Dicken, A., Wu, H.F.: Characterization of impact damage in ARALL laminates. Compos. Sci. Technol. 49, 139–144 (1993)

    Article  CAS  ADS  Google Scholar 

  10. Vlot, A.: Impact loading on fiber metal laminates. Int. J. Impact Eng. 18, 291–307 (1996)

    Article  Google Scholar 

  11. Abdullah, M.R., Cantwell, W.J.: The impact resistance of polypropylene-based fibre-metal laminates. Compos. Sci. Technol. 66, 1682–1693 (2006)

    Article  CAS  Google Scholar 

  12. Liu J., Liaw B.: Vibration and impulse responses of fiber-metal laminated beams. In: Proceedings of IMAC-XX: A Conference on Structural Dynamics, Los Angeles, CA, February 4-7, pp. 1411-1416 (2002)

  13. Langdon, G.S., Nuricka, G.N., Cantwell, W.J.: The response of fibre metal laminate panels subjected to uniformly distributed blast loading. Eur. J. Mech. A, Solids 27, 107–115 (2008)

    Article  MATH  Google Scholar 

  14. Vasek, A., Polak, J., Kozak, V.: Fatigue crack initiation in fiber-metal laminate GLARE 2. Mater. Sci. Eng. A234–236, 621–624 (1997)

    Google Scholar 

  15. Kawai, M., Hachinohe, A., Takumida, K., Kawase, Y.: Off-axis fatigue behaviour and its damage mechanics modelling for unidirectional fibre-metal hybrid composite: GLARE 2. Compos. Part A 32, 13–23 (2001)

    Article  Google Scholar 

  16. Castrodeza, E.M., Bastian, F.L.: Perez Ipiña J.E.: Critical fracture toughness, JC and δ5C, of unidirectional fiber-metal laminates. Thin-walled Struct. 41, 1089–1111 (2003)

    Article  Google Scholar 

  17. Abrate, S.: Impact on Composite Structures. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  18. Vlot, A., Kroon, E., La Rocca, G.: Impact response of fiber metal laminates. Key Eng. Mater. 141–143, 235–276 (1998)

    Article  Google Scholar 

  19. Reyes Villanueva, G., Cantwell, W.J.: The mechanical properties of fibre-metal laminates based on glass fibre reinforced polypropylene. Compos. Sci. Technol. 60, 1085–1094 (2000)

    Article  Google Scholar 

  20. Reyes Villanueva, G., Cantwell, W.J.: The high velocity impact response of composite and FML-reinforced sandwich structures. Compos. Sci. Technol. 64, 35–54 (2004)

    Article  CAS  Google Scholar 

  21. Hoo Fatt, M.S., Lin, C., Revilock Jr., D.M., Hopkins, D.A.: Ballistic impact of GLARETM fiber-metal laminates. Compos. Struct. 61, 73–88 (2003)

    Article  Google Scholar 

  22. Liu, Y., Liaw, B.: Drop-weight impact tests and finite element modeling of cast acrylic plates. Polymer Testing 28, 599–611 (2009)

    Google Scholar 

  23. Data sheets. Aviation Equipment Structures, Inc., Costa Mesa, California (1998)

  24. QA Reports B0319B-2, B1008B-1, B0904A-3. Structural Laminates Company, New Kensington, Pennsylvania (1994)

  25. Alloy 7475 Plate and Sheet, ACRP-053-B. Alcoa Mill Products, Bettendorf, Iowa.

  26. Fischer-Cripps, A.C.: Nanoindentation, 2nd edn. Springer-Verlag, New York (2004)

    Google Scholar 

  27. Belingardi, G., Cavatorta, M.P., Paolino, D.S.: Repeated impact response of hand lay-up and vacuum infusion thick glass reinforced laminates. Int. J. Impact Eng. 35, 609–619 (2008)

    Article  Google Scholar 

  28. Sevkat, E., Liaw, B., Delale, F., Raju, B.B.: Drop-weight impact of plain-woven hybrid glass-graphite/toughened epoxy composites. Compos. Part A: Appl. Sci. Manuf. 40, 1090–1110 (2009)

    Google Scholar 

  29. Mendelson, A.: Plasticity: Theory and Application. Krieger Publishing, Malabar, Florida (1983)

    Google Scholar 

Download references

Acknowledgements

This study was supported by NASA Faculty Award for Research (FAR) under Grant No. NAG3-2259 and by PSC-CUNY under Grants 61429-00 30 and 62466-00 31. Dr. Kenneth J. Bowles and Dr. John P. Gyekenyesi were the Technical Monitors of the NASA grant. Part of the equipment used in this investigation was acquired through Army Research Office Grant No. DAAD19-99-1-0366.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Liaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Liaw, B. Effects of Constituents and Lay-up Configuration on Drop-Weight Tests of Fiber-Metal Laminates. Appl Compos Mater 17, 43–62 (2010). https://doi.org/10.1007/s10443-009-9119-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-009-9119-1

Keywords

Navigation