Skip to main content
Log in

Studying the Tensile Behaviour of GLARE Laminates: A Finite Element Modelling Approach

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Numerical simulations based on finite element modelling are increasingly being developed to accurately evaluate the tensile properties of GLARE (GLAss fibre REinforced aluminium laminates). In this study, nonlinear tensile behaviour of GLARE Fibre Metal Laminates (FML) under in-plane loading conditions has been investigated. An appropriate finite element modelling approach has been developed to predict the stress–strain response and deformation behaviour of GLARE laminates using the ANSYS finite element package. The finite element model supports orthotropic material properties for glass/epoxy layer(s) and isotropic properties with the elastic–plastic behaviour for the aluminium layers. The adhesion between adjacent layers has been also properly simulated using cohesive zone modelling. An acceptable agreement was observed between the model predictions and experimental results available in the literature. The proposed model can be used to analyse GLARE laminates in structural applications such as mechanically fastened joints under different mechanical loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

d n :

Normal debonding parameter

d t :

Tangential debonding parameter

d m :

Mixed mode debonding parameter

E :

Young’s (elastic) modulus

G :

Shear modulus

G n :

Normal fracture energy/Work done by normal traction

G t :

Shear fracture energy/Work done by tangential (shear) traction

G I :

Critical fracture energy in mode I

G II :

Critical fracture energy in mode II

K n :

Normal stiffness

K t :

Tangential stiffness

T cr :

Critical normal/shear traction

T n :

Normal traction

T t :

Tangential/Shear traction

δ f :

Failure/complete separation

δ n :

Normal separation

\( \delta_n^{cr} \) :

Critical normal separation

\( \delta_n^f \) :

Failure normal separation

δ t :

Tangential separation

\( \delta_t^{cr} \) :

Critical tangential separation/slip distance

\( \delta_t^f \) :

Failure tangential separation/slip distance

Δ m , λ :

Mixed mode dimensionless parameters

τ max :

Maximum/critical shear stress

σ max :

Maximum/critical normal stress

References

  1. Gay, D.: Composite Materials Design and Application. CRC (2003)

  2. Vinson, J.R., Seirakowski, R.L.: The Behavior of Structures Composed of Composite Materials, 2nd ed. Kluwer (2004)

  3. Soutis, C.: Fibre reinforced composites in aircraft construction. Prog. Aerosp. Sci. 41, 143–151 (2005)

    Article  Google Scholar 

  4. Vlot, A.: Glare, History of the Development of a New Aircraft Material. Kluwer (2004)

  5. Vermeeren, C.A.J.R.: An historic overview of the development of Fibre Metal Laminates. Appl. Compos. Mater. 10, 189–205 (2003)

    Article  CAS  Google Scholar 

  6. Sinke, J.: Development of Fibre Metal Laminates: concurrent multi-scale modeling and testing. J. Mater. Sci. 41, 6777–6788 (2006)

    Article  CAS  Google Scholar 

  7. Vlot, A., Vogelesang, L.B., De Vries, T.J.: Towards application of fibre metal laminates in large aircraft. Aircr. Eng. Aerosp. Technol. 71(6), 558–570 (1999)

    Article  Google Scholar 

  8. Vogelesang, L.B., Vlot, A.: Development of fibre metal laminates for advanced aerospace structures. J. Mater. Process. Technol. 103, 1–5 (2000)

    Article  Google Scholar 

  9. Gunnink, J.W., Vlot, A., De Vries, T.J., Van Der Hoeven, W.: GLARE technology development 1997–2000. Appl. Compos. Mater. 9, 201–219 (2002)

    Article  Google Scholar 

  10. Frizzel, R.M., McCarthy, C.T., McCarthy, M.A.: A comparative study of the pin-bearing responses of two glass-based fibre metal laminates. Compos. Sci. Technol. 68, 3314–3321 (2008)

    Article  Google Scholar 

  11. Wu, G., Yang, J.M.: The mechanical behavior of GLARE laminates for aircraft structures. JOM 57, 72–79 (2005)

    Google Scholar 

  12. Botelho, E.C., Silva, R.A., Pardini, L.C., Rezende, M.C.: A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Mater. Res. 9(3), 247–256 (2006)

    CAS  Google Scholar 

  13. Sadighi, M., Dariushi, S.: An experimental study of the fibre orientation and laminate sequencing effects on mechanical properties of Glare. Proc. Inst. Mech. Eng., G: J. Aerosp. Eng. 222, 1015–1024 (2008)

    Article  Google Scholar 

  14. Vermeeren, C.: Around Glare, A New Aircraft Material in Context. Kluwer (2004)

  15. Alderliesten, R.C., Homan, J.J.: Fatigue and damage tolerance issues of Glare in aircraft structures. Int. J. Fatigue 28, 1116–1123 (2006)

    Article  Google Scholar 

  16. Hagenbeek, M., Van Hengel, C., Bosker, O.J., Vermeeren, C.A.J.R.: Static properties of fibre metal laminates. Appl. Compos. Mater. 10, 207–222 (2003)

    Article  Google Scholar 

  17. Woerden, H.J.M., Sinke, J., Hooimeijer, P.A.: Maintenance of GLARE structures and GLARE as riveted or bonded repair material. Appl. Compos. Mater. 10, 307–329 (2003)

    Article  Google Scholar 

  18. Chen, J.L., Sun, C.T.: Modeling of orthotropic elastic–plastic properties of ARALL laminates. Compos. Sci. Technol. 36, 321–337 (1989)

    Article  Google Scholar 

  19. Wu, H.F., Wu, L.L., Slagter, W.J., Verolme, J.L.: Use of rule of mixtures and metal volume fraction for mechanical property predictions of fibre-reinforced aluminum laminates. J. Mater. Sci. 29, 4583–4591 (1994)

    Article  CAS  Google Scholar 

  20. Wu, G., Yang, J.M.: Analytical modelling and numerical simulation of the nonlinear deformation of hybrid fibre–metal laminates. Model. Simul. Mater. Sci. Eng. 13, 413–425 (2005)

    Article  CAS  Google Scholar 

  21. Military Handbook: Metallic Materials and Elements for Aerospace Vehicle Structures. MIL-HDBK-5H, Washington, D.C. (1998)

  22. Preusch, K., Linde, P., Pleitner, J., De Boer H., Carmone, C.: “Modelling of fibre metal laminate shells applied to the inter rivet buckling phenomenon”. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS) (2004)

  23. ANSYS Help System, Mechanical APDL, Structural analysis guide, nonlinear structure analysis, 8.4. Modelling material Nonlinearities

  24. ANSYS Element References, SOLID185

  25. Camanho, P.P., Davila, G.: Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. NASA/TM-2002-211737 (2002)

  26. Liljedahl, C.D.M., Crocombe, A.D., Wahab, M.A., Ashcroft, I.A.: Damage modelling of adhesively bonded joints. Int. J. Ract. 141, 147–161 (2006)

    Article  Google Scholar 

  27. Needleman, A.: An analysis of tensile decohesion along an interface. J. Mech. Phys. Solids 38(3), 289–324 (1990)

    Article  Google Scholar 

  28. Tvergaard, V.: Effect of fibre debonding in a whisker-reinforced metal. Mater. Sci. Eng. A125, 203–213 (1990)

    CAS  Google Scholar 

  29. Tvergaard, V., Hutchinson, J.W.: The relation between crack growth resistance and fracture process parameters in elastic–plastic solids. J. Mech. Phys. Solids 40(6), 1377–1397 (1992)

    Article  Google Scholar 

  30. Camacho, G.T., Ortiz, M.: Computational modeling of impact damage in brittle materials. Int. J. Solids Struct. 33(20–22), 2899–2938 (1996)

    Article  Google Scholar 

  31. Geubelle, P.H., Baylor, J.: Impact-induced delamination of laminated composites: a 2D simulation. Compos., Part B Eng. 29(5), 589–602 (1998)

    Article  Google Scholar 

  32. Shet, C., Chandra, N.: Analysis of energy balance when using cohesive zone models to simulate fracture. Processes. J. Eng. Mater. Technol. 124, 440–450 (2002)

    Article  Google Scholar 

  33. Yan, Y., Shang, F.: Cohesive zone modeling of interfacial delamination in PZT thin films. Int. J. Solids Struct. 46, 2739–2749 (2009)

    Article  CAS  Google Scholar 

  34. Alfano, M., Furgiuele, F., Leonadi, A., Maletta, C., Paulino, G.H.: Fracture analysis of adhesive joints using intrinsic cohesive zone models. Atti del Congresso IGF19, Milano, 2-4 luglio (2007)

  35. ANSYS Help System, Mechanical APDL, Theory Reference, 4.13. cohesive zone material model

  36. Hogberg, J.L.: Mixed mode cohesive law. Int. J. Frac. 141, 549–559 (2006)

    Article  Google Scholar 

  37. Mohamed, G.F., Soutis, C., Hodzic, A.: Numerical investigation of fibre-metal laminates subjected to blast loadings. 2nd ECCOMAS Thematic Conference on the Mechanical Response of Composites. Imperial College London, UK (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Soltani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soltani, P., Keikhosravy, M., Oskouei, R.H. et al. Studying the Tensile Behaviour of GLARE Laminates: A Finite Element Modelling Approach. Appl Compos Mater 18, 271–282 (2011). https://doi.org/10.1007/s10443-010-9155-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-010-9155-x

Keywords

Navigation