Skip to main content
Log in

Analysis of Integrodifference Equations with a Separable Dispersal Kernel

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Integrodifference equations are a class of infinite-dimensional dynamical systems in discrete time that have recently received great attention as mathematical models of population dynamics in spatial ecology. The dispersal of individuals between generations is described by a ‘dispersal kernel’, a probability density function for the distance that an individual moves within a season. Previous authors recognized that the dynamics are reduced to a finite-dimensional problem when the dispersal kernel is separable. We prove some open questions from their work on the dynamics of a single population and then extend the idea to investigate the dynamics of two spatially distributed species in (i) a competitive relation, and (ii) a predator-prey relation. In all cases, we discuss how the dynamics of the population(s) depend on the amount of suitable space that is available to them. We find a number of bifurcations, such as period-doubling sequences and Naimark-Sacker bifurcations, which we illustrate through simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Allen, E., Allen, L., Gilliam, X.: Dispersal and competition models for plants. J. Math. Biol. 34, 455–481 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cantrell, R.S., Cosner, C.: Spatial Ecology Via Reaction-Diffusion Equations. Mathematical and Computational Biology. Wiley, New York (2003)

    MATH  Google Scholar 

  3. Cobbold, C., Lewis, M., Lutscher, F., Roland, J.: How parasitism affects critical patch size in a host-parasitoid system: application to Forest Tent Caterpillar. Theor. Popul. Biol. 67(2), 109–125 (2005)

    Article  MATH  Google Scholar 

  4. Day, S., Junge, O., Mischaikow, K.: A rigerous numerical method for the global dynamics of infinite-dimensional discrete dynamical systems. SIAM J. Appl. Dyn. Syst. 3(2), 117–160 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Day, S., Kalies, W.D.: Rigorous computation of the global dynamics of integrodifference equations with smooth nonlinearities. SIAM J. Numer. Anal. 51(6), 2957–2983 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Durrett, R.: Mutual Invadability Implies Coexistence in Spatial Models. Am. Math. Soc., Providence (2002)

    Book  MATH  Google Scholar 

  7. Fagan, W., Lutscher, F.: The average dispersal success approximation: a bridge linking home range size, natal dispersal, and metapopulation dynamics to critical patch size and reserve design. Ecol. Appl. 16(2), 820–828 (2006)

    Article  Google Scholar 

  8. Jury, E.: Inners and Stability of Dynamic Systems. Wiley, New York (1974)

    MATH  Google Scholar 

  9. Kot, M.: Diffusion-driven period-doubling bifurcations. Biosystems 22, 279–287 (1989)

    Article  Google Scholar 

  10. Kot, M., Schaffer, W.M.: Discrete-time growth-dispersal models. Math. Biosci. 80, 109–136 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Latore, J., Gould, P., Mortimer, A.: Spatial dynamics and critical patch size of annual plant populations. J. Theor. Biol. 190, 277–285 (1998)

    Article  Google Scholar 

  12. Lutscher, F.: Density-dependent dispersal in integrodifference equations. J. Math. Biol. 56(4), 499–524 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lutscher, F., Lewis, M.: Spatially-explicit matrix models. A mathematical analysis of stage-structured integrodifference equations. J. Math. Biol. 48, 293–324 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. May, M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (1973)

    Google Scholar 

  15. Neubert, M., Kot, M.: The subcritical collapse of predator populations in discrete time predator-prey models. Math. Biosci. 110, 45–66 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Neubert, M., Kot, M., Lewis, M.A.: Dispersal and pattern formation in a discrete-time predator-prey model. Theor. Popul. Biol. 48(1), 7–43 (1995)

    Article  MATH  Google Scholar 

  17. Skellam, J.G.: Random dispersal in theoretical populations. Biometrika 38, 196–218 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  18. Van Kirk, R.W.: Integrodifference models for biological growth and dispersal. Ph.D. thesis, University of Utah (1995)

  19. Van Kirk, R.W., Lewis, M.A.: Integrodifference models for persistence in fragmented habitats. Bull. Math. Biol. 59(1), 107–137 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frithjof Lutscher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bramburger, J., Lutscher, F. Analysis of Integrodifference Equations with a Separable Dispersal Kernel. Acta Appl Math 161, 127–151 (2019). https://doi.org/10.1007/s10440-018-0207-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-018-0207-9

Keywords

Mathematics Subject Classification

Navigation