Skip to main content
Log in

Existence of Multi-peak Solutions for a Class of Quasilinear Problems in Orlicz-Sobolev Spaces

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

The aim of this work is to establish the existence of multi-peak solutions for the following class of quasilinear problems

$$ - \mbox{div} \bigl(\epsilon^{2}\phi\bigl(\epsilon|\nabla u|\bigr)\nabla u \bigr) + V(x)\phi\bigl(\vert u\vert\bigr)u = f(u)\quad\mbox{in } \mathbb{R}^{N}, $$

where \(\epsilon\) is a positive parameter, \(N\geq2\), \(V\), \(f\) are continuous functions satisfying some technical conditions and \(\phi\) is a \(C^{1}\)-function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, A., Fournier, J.F.: Sobolev Spaces, 2nd edn. Academic Press, San Diego (2003)

    MATH  Google Scholar 

  2. Alves, C.O.: Existence of multi-peak of solutions for a class of quasilinear problems in \(\mathbb{R}^{N}\). Topol. Methods Nonlinear Anal. 38, 307–332 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Alves, C.O., da Silva, A.R.: Multiplicity and concentration of positive solutions for a class of quasilinear problems through Orlicz-Sobolev space. J. Math. Phys. 57, 111502 (2016). doi:10.1063/1.4966534

    Article  MathSciNet  MATH  Google Scholar 

  4. Alves, C.O., da Silva, A.R.: Multiplicity and concentration behavior of solutions for a quasilinear problem involving N-functions via penalization method. Electron. J. Differ. Equ. 2016(158), 1–24 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Alves, C.O., Figueiredo, G.: Multi-bump solutions for a Kirchhoff-type problem. Adv. Nonlinear Anal. 5(1), 1–26 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alves, C.O., Figueiredo, G.M., Santos, J.A.: Strauss and Lions type results for a class of Orlicz-Sobolev spaces and applications. Topol. Methods Nonlinear Anal. 44(2), 435–456 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ambrosetti, A., Badiale, M., Cingolani, S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 140, 285–300 (1997)

    Article  MATH  Google Scholar 

  8. Azzollini, A., d’Avenia, P., Pomponio, A.: Quasilinear elliptic equations in \(\mathbb{R}^{N}\) via variational methods and Orlicz-Sobolev embeddings. Calc. Var. Partial Differ. Equ. 49, 197–213 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonanno, G., Bisci, G.M., Radulescu, V.: Existence and multiplicity of solutions for a quasilinear nonhomogeneous problems: an Orlicz-Sobolev space setting. J. Math. Anal. Appl. 330, 416–432 (2007)

    Article  MathSciNet  Google Scholar 

  10. Bonanno, G., Bisci, G.M., Radulescu, V.: Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz-Sobolev spaces. Nonlinear Anal. 75, 4441–4456 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cingolani, S., Lazzo, M.: Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations. Topol. Methods Nonlinear Anal. 10, 1–13 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. del Pino, M., Felmer, P.L.: Local mountain pass for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4(2), 121–137 (1996)

    Article  MATH  Google Scholar 

  14. del Pino, M., Felmer, P.L.: Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 15, 127–149 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. DiBenedetto, E.: \(C^{1, \gamma}\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7(8), 827–850 (1985)

    Article  MathSciNet  Google Scholar 

  16. Donaldson, T.K., Trudinger, N.S.: Orlicz-Sobolev spaces and imbedding theorems. J. Funct. Anal. 8(1), 52–75 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  17. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69(3), 397–408 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fu, Y., Shan, Y.: On the removability of isolated singular points for elliptic equations involving variable exponent. Adv. Nonlinear Anal. 5(2), 121–132 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Fukagai, N., Narukawa, K.: On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems. Ann. Mat. Pura Appl. 186(3), 539–564 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fukagai, N., Ito, M., Narukawa, K.: Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on \(\mathbb{R}^{N}\). Funkc. Ekvacioj 49(2), 235–267 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fukagai, N., Ito, M., Narukawa, K.: Quasilinear elliptic equations with slowly growing principal part and critical Orlicz-Sobolev nonlinear term. Proc. R. Soc. Edinb., Sect. A 139(1), 73–106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fusco, N., Sbordone, C.: Some remarks on the regularity of minima of anisotropic integrals. Commun. Partial Differ. Equ. 18(1–2), 153–167 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Giacomini, A., Squassina, M.: Multi-peak solutions for a class of degenerate elliptic equations. Asymptot. Anal. 36, 115–147 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Gui, C.: Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method. Commun. Partial Differ. Equ. 21(5–6), 787–820 (1996)

    Article  MATH  Google Scholar 

  25. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, San Diego (1968)

    MATH  Google Scholar 

  26. Le, V.K., Motreanu, D., Motreanu, V.V.: On a non-smooth eigenvalue problem in Orlicz-Sobolev spaces. Appl. Anal. 89(2), 229–242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mihailescu, M., Rădulescu, V.: Existence and multiplicity of solutions for a quasilinear non-homogeneous problems: an Orlicz-Sobolev space setting. J. Math. Anal. Appl. 330, 416–432 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mihailescu, M., Rădulescu, V.: Nonhomogeneous Neumann problems in Orlicz-Sobolev spaces. C. R. Acad. Sci. Paris, Ser. I 346, 401–406 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mihailescu, M., Rădulescu, V., Repovš, D.: On a non-homogeneous eigenvalue problem involving a potential: an Orlicz-Sobolev space setting. J. Math. Pures Appl. 93, 132–148 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, vol. 1034. Springer, Berlin (1983)

    MATH  Google Scholar 

  31. Oh, Y.G.: On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Commun. Math. Phys. 131(2), 223–253 (1990)

    Article  MATH  Google Scholar 

  32. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(2), 270–291 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rădulescu, V.: Nonlinear elliptic equations with variable exponent: old and new. Nonlinear Anal. 121, 336–369 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rădulescu, V., Repovš, D.: Partial Differential Equations with Variable Exponents. Variational Methods and Qualitative Analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015)

    Book  MATH  Google Scholar 

  35. Rao, M.N., Ren, Z.D.: Theory of Orlicz Spaces. Dekker, New York (1985)

    MATH  Google Scholar 

  36. Repovš, D.: Stationary waves of Schrödinger-type equations with variable exponent. Anal. Appl. 13, 645–661 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Santos, J.A.: Multiplicity of solutions for quasilinear equations involving critical Orlicz-Sobolev nonlinear terms. Electron. J. Differ. Equ. 2013(249), 1–13 (2013)

    MathSciNet  Google Scholar 

  38. Santos, J.A., Soares, S.H.M.: Radial solutions of quasilinear equations in Orlicz-Sobolev type spaces. J. Math. Anal. Appl. 428, 1035–1053 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153(2), 229–244 (1993)

    Article  MATH  Google Scholar 

  40. Zhang, Z., Xu, H.: Existence of multi-peak solutions for \(p\)-Laplace problems in \(\mathbb{R}^{N}\). Acta Math. Appl. Sin. 31(4), 1061–1072 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudianor O. Alves.

Additional information

C.O. Alves was partially supported by CNPq/Brazil 304036/2013-7 and INCT-MAT.

Appendix: New Properties Involving Orlicz-Sobolev Spaces

Appendix: New Properties Involving Orlicz-Sobolev Spaces

In this appendix, we will prove some results which were used in the present paper. Our first result is associated with an important property involving Orlicz-Sobolev spaces, which is well known for Sobolev spaces. Here, we follows the same steps found in [16, Theorem 3.2] (or [1, Theorem 8.35]), however our proof can be applied for unbounded domains.

Proposition 5.1

There exists \(M^{*}>0\), which is independent of \(\epsilon\), such that

$$\begin{aligned} \Vert u\Vert_{\varPhi_{*}, \varOmega_{\epsilon, i}}\leq M^{*} \Vert u \Vert_{\widetilde{X}_{\epsilon, i}} \quad\textit{for all } u \in\widetilde{X}_{\epsilon, i}. \end{aligned}$$

Proof

In what follows, we define \(\upsilon(t) = (\varPhi_{*}(t) )^{1- \frac{1}{N}}\). Firstly, notice that

$$\begin{aligned} \biggl|\frac{d}{dt}\upsilon(t) \biggr|\leq\frac{N-1}{N}\widetilde{ \varPhi} ^{-1} \bigl(\upsilon(t)^{\frac{N}{N-1}} \bigr) \quad\mbox{for all } t>0. \end{aligned}$$
(5.1)

For each \(u \in\widetilde{X}_{\epsilon, i}\cap L^{\infty}( \varOmega_{\epsilon, i})\) and \(k>0\), the function \(\nu:= \upsilon \circ ( \frac{|u|}{k} ) \in W^{1,1}(\varOmega_{\epsilon, j})\) and

$$ \frac{\partial\nu(x)}{\partial x_{j}} = \upsilon^{\prime} \biggl( \frac{|u|}{k}(x) \biggr)\frac{\operatorname{sgn}u(x)}{k}\frac{\partial u (x)}{ \partial x_{j}}. $$

By [1, Theorem 4.12], once \(\varOmega_{{\epsilon,j}}\) verifies the uniform cone condition for all \(\epsilon>0\), we know that the constant associated with the embedding \(W^{1,1}(\varOmega_{\epsilon , j}) \hookrightarrow L^{\frac{N}{N-1}}(\varOmega_{\epsilon, j})\) does not depend on \(\epsilon\), that is, there exists a positive constant \(C\), which is independent of \(u\) and \(\epsilon\), such that

$$ \Vert\nu\Vert_{L^{\frac{N}{N-1}}(\varOmega_{\epsilon, j})}\leq C \Biggl(\sum_{j=1}^{N} \biggl\Vert \frac{\partial\nu}{\partial x_{j}} \biggr\Vert _{ L^{1}(\varOmega_{\epsilon, j})} + \Vert\nu \Vert_{ L^{1}(\varOmega_{\epsilon, j})} \Biggr), $$

or equivalently,

$$\begin{aligned} \biggl[ \int_{\varOmega_{\epsilon, i}}\varPhi_{*} \biggl(\frac{|u|}{k} \biggr)dx \biggr]^{1- \frac{1}{N}}\leq\frac{C}{k}\sum _{j=1}^{N} \int_{\varOmega_{\epsilon, i}} \biggl|\upsilon^{\prime} \biggl(\frac{|u|}{k} \biggr)\frac{\partial u }{\partial x_{j}} \biggr|dx + C \int_{\varOmega_{\epsilon, i}} \biggl| \upsilon \biggl( \frac{|u|}{k} \biggr) \biggr| dx. \end{aligned}$$

Setting \(k = \Vert u\Vert_{\varPhi_{*}, \varOmega_{\epsilon, i}}\), the Holder’s inequality together with (5.1) yields

$$\begin{aligned} 1\leq\frac{2C}{k}\frac{N-1}{N}\sum _{j=1}^{N} \biggl\Vert \widetilde{\varPhi} ^{-1} \biggl(\varPhi_{*} \biggl(\frac{|u|}{k} \biggr) \biggr) \biggr\Vert _{\widetilde{\varPhi}, \varOmega_{\epsilon, i}} \biggl\Vert \frac{ \partial u }{\partial x_{j}} \biggr\Vert _{\varPhi, \varOmega_{\epsilon, i}} + C \int_{\varOmega_{\epsilon, i}} \biggl| \upsilon \biggl( \frac{|u|}{k} \biggr) \biggr| dx. \end{aligned}$$
(5.2)

Now, a direct computation leads to

$$ \int_{\varOmega_{\epsilon, i}} \biggl|\upsilon \biggl( \frac{|u|}{k} \biggr)\biggr| dx \leq\frac{2}{k}\frac{N-1}{N} \biggl\Vert \widetilde{\varPhi}^{-1} \biggl( \varPhi_{*}\biggl(\frac{|u|}{k}\biggr) \biggr) \biggr\Vert _{\widetilde{\varPhi}, \varOmega_{\epsilon, i}}\Vert u \Vert_{\varPhi, \widetilde{\varOmega}_{\epsilon, i}}. $$

Since

$$ \biggl\Vert \widetilde{\varPhi}^{-1} \biggl(\varPhi_{*} \biggl( \frac{|u|}{k} \biggr) \biggr) \biggr\Vert _{\widetilde{\varPhi}, \varOmega_{\epsilon, i}}\leq1, $$

we get,

$$\begin{aligned} \int_{\varOmega_{\epsilon, i}} \biggl|\upsilon \biggl( \frac{|u|}{k} \biggr)\biggr| dx \leq& \frac{2}{k}\frac{N-1}{N}\Vert u \Vert_{\varPhi, \widetilde{\varOmega}_{\epsilon, i}}. \end{aligned}$$
(5.3)

From (5.2)–(5.3),

$$\begin{aligned} 1 \leq& \frac{2C}{k}\frac{N-1}{N} \Vert\nabla u \Vert_{\varPhi, \widetilde{\varOmega}_{\epsilon, i}}+ \frac{2}{k} \frac{N-1}{N}\Vert u \Vert_{\varPhi, \widetilde{\varOmega}_{\epsilon, i}}. \end{aligned}$$

Hence, there exists \(M_{*}>0\), independent of \(\epsilon\) such that

$$ \Vert u\Vert_{\varPhi_{*}, \varOmega_{\epsilon, i}}\leq M^{*} \Vert u \Vert_{\widetilde{X}_{\epsilon, i}} \quad \mbox{for all } u \in\widetilde{X}_{\epsilon, i}\cap L^{\infty}( \varOmega_{\epsilon, i}), $$

obtaining the desired result. □

As a byproduct of the above proof, we have the following corollary

Corollary 5.1

Let \((y_{n,i})\) the sequence obtained in (4.6). There is \(C>0\), which is independent of \(\rho\) and \(n \in\mathbb{N}\), such that

$$\begin{aligned} \int_{\mathbb{R}^{N}\backslash\bigcup_{j = 1}^{p}B_{\rho}(y_{n, i})} \varPhi_{*}(|v|)dx \leq C \Vert v \Vert_{W^{1, \varPhi}(\mathbb{R}^{N}\backslash\bigcup_{j = 1}^{p}B_{ \rho}(y_{n, i}))}, \end{aligned}$$

for all \(v \in W^{1,\varPhi}(\mathbb{R}^{N}\backslash\bigcup_{j = 1}^{p}B _{\rho}(y_{n, i}))\).

Proof

The corollary follows by repeating the same steps used in the proof Proposition 5.1. The main point that we would like to point out is the fact that the constant associated with the embedding

$$ W^{1,1}\biggl(\mathbb{R}^{N}\backslash\bigcup_{j = 1}^{p}B_{\rho}(y_{n, i}) \biggr) \hookrightarrow L^{\frac{N}{N-1}}\biggl(\mathbb{R}^{N}\backslash \bigcup_{j = 1} ^{p}B_{\rho}(y_{n, i})\biggr) $$

is also independent of \(\rho\) and \(n \in\mathbb{N}\), because \(\varTheta_{\rho,n,i}=\mathbb{R}^{N}\backslash\bigcup_{j = 1}^{p}B_{ \rho}(y_{n, i})\) verifies the uniform cone condition for all \(\rho>0\) and \(n \in\mathbb{N}\). □

The next result is also well known for Sobolev spaces, however for Orlicz-Sobolev spaces we do not know any reference. Here, we adapt some arguments found in [6].

Proposition 5.2

Let \(\varrho>0\) and \(\epsilon_{n}\in(0, +\infty)\) with \(\epsilon _{n}\rightarrow0\). Let \(v_{n, i}\subset\widetilde{X}_{\epsilon_{n}}\), \(i\) be a sequence and a constant \(C_{0}>0\) such that

$$ \Vert v_{n, i}\Vert_{\widetilde{X}_{\epsilon_{n}, i}} \leq C_{0}\quad \textit{and}\quad\lim_{n\rightarrow+\infty}\sup_{y \in\mathbb{R} ^{N}} \int_{B_{\varrho}(y)\cap\varOmega_{\epsilon_{n}, i}}\varPhi\bigl(|v_{n, i}|\bigr)dx = 0. $$

Then,

$$ \lim_{n\rightarrow+\infty} \int_{\varOmega_{\epsilon_{n}, i}}B\bigl(|v_{n, i}|\bigr)dx = 0, $$

for any N-function \(B\) verifying \(\Delta_{2}\)-condition,

$$ \lim_{t\rightarrow0}\frac{B(t)}{\varPhi(t)} = 0\quad\textit{and}\quad \lim _{|t|\rightarrow+\infty}\frac{B(t)}{\varPhi_{*}(t)} = 0. $$

Proof

Firstly, note that given \(\eta>0\) there exists \(\kappa>0\) such that

$$ B\bigl(|v_{n, i}|\bigr)\leq\eta\varPhi_{*}\bigl(|v_{n, i}|\bigr),\quad \mbox{for } |v _{n, i}|\geq\kappa. $$

As \((\|v_{n, i}\|_{\widetilde{X}_{\epsilon_{n}, i}})\) is bounded in ℝ, we have

$$ \int_{\varOmega_{\epsilon_{n}, i}}B\bigl(|v_{n, i}|\bigr)dx \leq\eta C + \int_{\varOmega_{\epsilon_{n}, i}\cap[|v_{n, i}|\leq\kappa]}B\bigl(|v_{n, i}|\bigr)dx $$

which implies

$$\begin{aligned} \limsup_{n \to+ \infty} \int_{\varOmega_{\epsilon_{n}, i}}B\bigl(|v_{n, i}|\bigr)dx \leq\eta C + \limsup _{n \to+ \infty} \int_{\varOmega_{\epsilon_{n}, i}\cap[|v_{n, i}|\leq\kappa]}B\bigl(|v_{n, i}|\bigr)dx. \end{aligned}$$
(5.4)

We will show that

$$\begin{aligned} \limsup_{n \to+ \infty} \int_{\varOmega_{\epsilon_{n}, i}\cap[|v_{n, i}|\leq\kappa]}B\bigl(|v_{n, i}|\bigr)dx = 0. \end{aligned}$$
(5.5)

For this purpose, we consider for each \(\zeta>0\) enough small, the function \(\chi_{\zeta} \in C_{0}^{1}(\mathbb{R})\) given by

$$\begin{aligned} \chi_{\zeta}(s) =\left \{ \textstyle\begin{array}[c]{lll} 1, &\quad \mbox{if } |s|\le\kappa- \zeta, \\ a_{1}(s), &\quad \mbox{if } -(\kappa+ \zeta) \leq s\leq-(\kappa- \zeta), \\ a_{2}(s), &\quad \mbox{if } \kappa- \zeta\leq s\leq\kappa+ \zeta, \\ 0, &\quad \mbox{if } |s|\geq\kappa+ \zeta, \end{array}\displaystyle \right . \end{aligned}$$

where \(a_{1}, a_{2}\in C^{1} (\mathbb{R};[0, 1] )\), \(a_{1}\) is nondecreasing and \(a_{2}\) is nonincreasing. Next, let us define the auxiliary function

$$ u_{n, i}(x) = \chi_{\zeta}\bigl(\bigl|v_{n, i}(x)\bigr| \bigr)v_{n, i}(x). $$

Notice that

$$ \int_{\varOmega_{\epsilon_{n}, i}}B\bigl(|u_{n, i}|\bigr)dx \geq \int_{\varOmega_{\epsilon_{n}, i}\cap[|v_{n, i}|\leq\kappa- \zeta]}B\bigl(|v _{n, i}|\bigr)dx. $$
(5.6)

Thereby, (5.5) follows by showing the limit below

$$ \limsup_{n \to+ \infty} \int_{\varOmega_{\epsilon_{n}, i}}B\bigl(|u_{n, i}|\bigr)dx = 0. $$
(5.7)

In fact, gathering the above limit with (5.6), we derive that

$$\begin{aligned} \limsup_{n \to+ \infty} \int_{\varOmega_{\epsilon_{n}, i}\cap[|v_{n, i}|\leq\kappa- \zeta]}B\bigl(|v _{n, i}|\bigr)dx = 0. \end{aligned}$$

Since

$$ \int_{\varOmega_{\epsilon_{n}, i}\cap[\kappa- \zeta\leq|v_{n, i}| \leq\kappa]}B\bigl(|v_{n, i}|\bigr)dx = o_{n}(1) $$

and

$$\begin{aligned} \int_{\varOmega_{\epsilon_{n}, i}\cap[|v_{n, i}|\leq\kappa]}B\bigl(|v_{n, i}|\bigr)dx =& \int_{\varOmega_{\epsilon_{n}, i}\cap[\kappa- \zeta\leq|v_{n, i}| \leq\kappa]}B\bigl(|v_{n, i}|\bigr)dx \\ &{} + \int_{\varOmega_{\epsilon_{n}, i}\cap[|v_{n, i}|\leq\kappa- \zeta]}B\bigl(|v _{n, i}|\bigr)dx, \end{aligned}$$

we deduce that

$$ \limsup_{n \to+ \infty} \int_{\varOmega_{\epsilon_{n}, i}\cap[|v_{n, i}|\leq\kappa]}B\bigl(|v_{n, i}|\bigr)dx=0, $$

showing (5.5). Now, by (5.4) and (5.5),

$$\begin{aligned} \limsup_{n \to+ \infty} \int_{\varOmega_{\epsilon_{n}, i}}B\bigl(|v_{n, i}|\bigr)dx \leq\eta C. \end{aligned}$$

By using that \(\eta\) is arbitrary, it follows that

$$\begin{aligned} \limsup_{n \to+ \infty} \int_{\varOmega_{\epsilon_{n}, i}}B\bigl(|v_{n, i}|\bigr)dx = 0, \end{aligned}$$

proving the proposition. Now, we observe that (5.7) follows by repeating the same approach explored in [6, Theorem 3.1]. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, C.O., da Silva, A.R. Existence of Multi-peak Solutions for a Class of Quasilinear Problems in Orlicz-Sobolev Spaces. Acta Appl Math 151, 171–198 (2017). https://doi.org/10.1007/s10440-017-0107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-017-0107-4

Keywords

Mathematics Subject Classification

Navigation