Skip to main content
Log in

Global Boundedness in a Two-Competing-Species Chemotaxis System with Two Chemicals

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

This paper deals with a two-competing-species chemotaxis system with two different chemicals

$$\begin{aligned} \left \{ \textstyle\begin{array}{l@{\quad}l} \displaystyle u_{t}=\Delta u-\chi_{1}\nabla \cdot (u\nabla v)+\mu_{1} u(1-u-a _{1}w), & (x,t)\in \varOmega \times (0,\infty ), \\ \displaystyle \tau v_{t}=\Delta v-v+w, & (x,t)\in \varOmega \times (0,\infty ), \\ \displaystyle w_{t}=\Delta w-\chi_{2}\nabla \cdot (w\nabla z)+\mu_{2}w(1-a_{2}u-w), & (x,t)\in \varOmega \times (0,\infty ), \\ \displaystyle \tau z_{t}=\Delta z-z+u, & (x,t)\in \varOmega \times (0,\infty ), \end{array}\displaystyle \right . \end{aligned}$$

under homogeneous Neumann boundary conditions in a smooth bounded domain \(\varOmega \subset \mathbb{R}^{n}\) \((n\geq 1)\) with the nonnegative initial data \((u_{0},\tau v_{0},w_{0},\tau z_{0})\in C^{0}(\overline{\varOmega }) \times W^{1,\infty }(\varOmega )\times C^{0}(\overline{\varOmega })\times W ^{1,\infty }(\varOmega )\), where \(\tau \in \{0,1\}\) and the parameters \(\chi_{i},\mu_{i},a_{i}\) (\(i=1,2\)) are positive. When \(\tau =0\), based on some a priori estimates and Moser-Alikakos iteration, it is shown that regardless of the size of initial data, the system possesses a unique globally bounded classical solution for any positive parameters if \(n=2\). On the other hand, when \(\tau =1\), relying on the maximal Sobolev regularity and semigroup technique, it is proved that the system admits a unique globally bounded classical solution provided that \(n\geq 1\) and there exists \(\theta_{0}>0\) such that \(\frac{\chi_{2}}{ \mu_{1}}<\theta_{0}\) and \(\frac{\chi_{1}}{\mu_{2}}<\theta_{0}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikakos, N.D.: \(L^{p}\) bounds of solutions of reaction-diffusion equations. Commun. Partial Differ. Equ. 4, 827–868 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Schmeisser, H.J., Triebel, H. (eds.) Function Spaces, Differential Operators and Nonlinear Analysis. Teubner-Texte zur Mathematik, vol. 133, pp. 9–126. Teubner, Stuttgart (1993)

    Chapter  Google Scholar 

  3. Baghaei, K., Hesaaraki, M.: Global existence and boundedness of classical solutions for a chemotaxis model with logistic source. C. R. Acad. Sci. Paris, Ser. I 351, 585–591 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biler, P., Espejo, E., Guerra, I.: Blowup in higher dimensional two species chemotactic systems. Commun. Pure Appl. Anal. 12, 89–98 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biler, P., Hebisch, W., Nadzieja, T.: The Debye system: Existence and large time behavior of solutions. Nonlinear Anal. 23, 1189–1209 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, X.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source. J. Math. Anal. Appl. 412, 181–188 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, X.: Boundedness in a three-dimensional chemotaxis-haptotaxis model. Z. Angew. Math. Phys. (2016). doi:10.1007/s00033-015-0601-3

    MathSciNet  MATH  Google Scholar 

  8. Choi, Y., Wang, Z.: Prevention of blow-up by fast diffusion in chemotaxis. J. Math. Anal. Appl. 362, 553–564 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cieślak, T., Winkler, M.: Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity 21, 1057–1076 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Conca, C., Espejo, E., Vilches, K.: Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in \(R^{2}\). Eur. J. Appl. Math. 22, 553–580 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Delgado, M., Gayte, I., Morales-Rodrigo, C., Suárez, A.: An angiogenesis model with nonlinear chemotactic response and flux at the tumor boundary. Nonlinear Anal. 72, 330–347 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Espejo, E., Stevens, A., Velázquez, J.J.L.: Simultaneous finite time blow-up in a two-species model for chemotaxis. Analysis 29, 317–338 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Espejo, E., Suzuki, T.: Global existence and blow-up for a system describing the aggregation of microglia. Appl. Math. Lett. 35, 29–34 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, New York (1983)

    Book  MATH  Google Scholar 

  15. Henry, D.: Geometric theory of semilinear parabolic equations. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  16. Hieber, M., Prüss, J.: Heat kernels and maximal \(L^{p}-L^{q}\) estimate for parabolic evolution equations. Commun. Partial Differ. Equ. 22, 1647–1669 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Horstmann, D.: Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species. J. Nonlinear Sci. 21, 231–270 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jin, H.Y.: Boundedness of the attraction-repulsion Keller-Segel system. J. Math. Anal. Appl. 422, 1463–1478 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MATH  Google Scholar 

  21. Kowalczyk, R., Szymanska, Z.: On the global existence of solutions to an aggregation model. J. Math. Anal. Appl. 343, 379–398 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lankeit, J.: Chemotaxis can prevent thresholds on population density. Discrete Contin. Dyn. Syst., Ser. B 20, 1499–1527 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lankeit, J.: Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source. J. Differ. Equ. 258, 1158–1191 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, Y., Li, Y.: Finite-time blow-up in higher dimensional fully-parabolic chemotaxis system for two species. Nonlinear Anal. 109, 72–84 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin, K., Mu, C., Wang, L.: Large time behavior for an attraction-repulsion chemotaxis system. J. Math. Anal. Appl. 426, 105–124 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lin, K., Mu, C., Wang, L.: Boundedness in a two-species chemotaxis system. Math. Methods Appl. Sci. 38, 5085–5096 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, J., Wang, Z.A.: Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension. J. Biol. Dyn. 6, 31–41 (2012)

    Article  MathSciNet  Google Scholar 

  28. Liu, P., Shi, J., Wang, Z.A.: Pattern formation of the attraction-repulsion Keller-Segel system. Discrete Contin. Dyn. Syst., Ser. B 18, 2597–2625 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mu, C., Wang, L., Zheng, P., Zhang, Q.: Global existence and boundedness of classical solutions to a parabolic-parabolic chemotaxis system. Nonlinear Anal., Real World Appl. 14, 1634–1642 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Murray, J.D.: Mathematical Biology. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  31. Nagai, T.: Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains. J. Inequal. Appl. 6, 37–55 (2001)

    MathSciNet  MATH  Google Scholar 

  32. Osaki, K., Tsujikawa, T., Yagi, A., Mimura, M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal., Real World Appl. 51, 119–144 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stinner, C., Tello, J.I., Winkler, M.: Competitive exclusion in a two-species chemotaxis model. J. Math. Biol. 68, 1607–1626 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tao, Y.: Boundedness in a chemotaxis model with oxygen consumption by bacteria. J. Math. Anal. Appl. 381, 521–529 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tao, Y.: Boundedness in a two-dimensional chemotaxis-haptotaxis system. arXiv:1407.7382

  36. Tao, Y., Wang, Z.A.: Competing effects of attraction vs. repulsion in chemotaxis. Math. Models Methods Appl. Sci. 1, 1–36 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tao, Y., Winkler, M.: Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals. Discrete Contin. Dyn. Syst., Ser. B 20, 3165–3183 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tao, Y., Winkler, M.: Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant. J. Differ. Equ. 257, 784–815 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tello, J.I., Winkler, M.: A chemotaxis system with logistic source. Commun. Partial Differ. Equ. 32(6), 849–877 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tello, J.I., Winkler, M.: Stabilization in a two-species chemotaxis system with a logistic source. Nonlinearity 25, 1413–1425 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, L., Mu, C., Zheng, P.: On a quasilinear parabolic-elliptic chemotaxis system with logistic source. J. Differ. Equ. 256, 1847–1872 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, Q., Zhang, L., Yang, J., Hu, J.: Global existence and steady states of a two competing species Keller-Segel chemotaxis model. Kinet. Relat. Models 8, 777–807 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Winkler, M.: How far can chemotactic cross-diffusion enforce exceeding carrying capacities? J. Nonlinear Sci. 24, 809–855 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Winkler, M.: Chemotaxis with logistic source: very weak global solutions and their boundedness properties. J. Math. Anal. Appl. 348, 708–729 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Winkler, M.: Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening. J. Differ. Equ. 257, 1056–1077 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Winkler, M.: Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity. Math. Nachr. 283, 1664–1673 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Winkler, M., Djie, K.C.: Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect. Nonlinear Anal. 72, 1044–1064 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yang, C., Cao, X., Jiang, Z., Zheng, S.: Boundedness in a quasilinear fully parabolic Keller-Segel system of higher dimension with logistic source. J. Math. Anal. Appl. 430, 585–591 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang, Q., Li, Y.: Global boundedness of solutions to a two-species chemotaxis system. Z. Angew. Math. Phys. 66, 83–93 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zheng, J.: Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source. J. Differ. Equ. 259, 120–140 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zheng, P., Mu, C., Hu, X., Tian, Y.: Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source. J. Math. Anal. Appl. 424, 509–522 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zheng, P., Mu, C., Hu, X.: Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source. Discrete Contin. Dyn. Syst., Ser. A 35, 2299–2323 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zheng, P., Mu, C.: Global existence of solutions for a fully parabolic chemotaxis system with consumption of chemoattractant and logistic source. Math. Nachr. 288, 710–720 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their comments and suggestions on the improvement of the paper. The first author is supported by National Natural Science Foundation of China (Grant Nos. 11526042, 11601053), the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJ1500403), the Basic and Advanced Research Project of CQCSTC (Grant No. cstc2015jcyjA00008), and the Doctor Start-up Funding and the Natural Science Foundation of Chongqing University of Posts and Telecommunications (Grant Nos. A2014-25 and A2014-106). The second author is supported by National Natural Science Foundation of China (Grant Nos. 11371384, 11571062), the Basic and Advanced Research Project of CQCSTC (Grant No. cstc2015jcyjBX0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, P., Mu, C. Global Boundedness in a Two-Competing-Species Chemotaxis System with Two Chemicals. Acta Appl Math 148, 157–177 (2017). https://doi.org/10.1007/s10440-016-0083-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-016-0083-0

Keywords

Navigation