Skip to main content

Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems

  • Chapter
Function Spaces, Differential Operators and Nonlinear Analysis

Part of the book series: Teubner-Texte zur Mathematik ((TTZM,volume 133))

Abstract

It is the purpose of this paper to describe some of the recent developments in the mathematical theory of linear and quasilinear elliptic and parabolic systems with nonhomogeneous boundary conditions. For illustration we use the relatively simple set-up of reaction-diffusion systems which are — on the one h and — typical for the whole class of systems to which the general theory applies and — on the other h and — still simple enough to be easily described without too many technicalities. In addition, quasilinear reaction-diffusion equations are of great importance in applications and of actual mathematical and physical interest, as is witnessed by the examples we include.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Acquistapace, B. Terreni. On the abstract non-autonomous Cauchy problem in the case of constant domains. Ann. Mat. Pura Appl. (4), 140 (1985), 1–55.

    MathSciNet  MATH  Google Scholar 

  2. P. Acquistapace, B. Terreni. Linear parabolic equations in Banach spaces with variable domain but constant interpolation spaces. Ann. Scuola Norm. Sup. Pisa, Ser. IV, 13 (1986), 75–107.

    Google Scholar 

  3. P. Acquistapace, B. Terreni. A unified approach to abstract linear non-autonomous parabolic equations. Rend. Sem. Mat. Univ. Padova, 78 (1987), 47–107.

    MathSciNet  MATH  Google Scholar 

  4. R.A. Adams. Sobolev Spaces. Academic Press, New York, 1975.

    MATH  Google Scholar 

  5. M.S. Agranovich, M.I. Vishik. Elliptic problems with a parameter and parabolic problems of general type. Russ. Math. Surveys, 19 (1964), 53–157.

    MATH  Google Scholar 

  6. H. Amann. Dual semigroups and second order linear elliptic boundary value problems. Israel J. Math., 45 (1983), 225–254.

    MathSciNet  MATH  Google Scholar 

  7. H. Amann. Existence and regularity for semilinear parabolic evolution equations. Ann. Scuola Norm. Sup. Pisa, Ser. IV, 11 (1984), 593–676.

    MathSciNet  MATH  Google Scholar 

  8. H. Amann. Global existence for semilinear parabolic systems. J. reine angew. Math., 360 (1985), 47–83.

    MathSciNet  MATH  Google Scholar 

  9. H. Amann. Parabolic evolution equations with nonlinear boundary conditions. In F.E. Browder, editor, Nonlinear Functional Analysis and its Applications, pages 17–27, Proc. Symp. Pure Math. 45, Amer. Math. Soc., Providence, R.I., 1986.

    Google Scholar 

  10. H. Amann. Quasilinear evolution equations and parabolic systems. Trans. Amer. Math. Soc, 293 (1986), 191–227.

    MathSciNet  MATH  Google Scholar 

  11. H. Amann. Quasilinear parabolic systems under nonlinear boundary conditions. Arch. Rat. Mech. Anal., 92 (1986), 153–192.

    MathSciNet  MATH  Google Scholar 

  12. H. Amann. Semigroups and nonlinear evolution equations. Lin. Alg. Appl., 84 (1986), 3–32.

    MathSciNet  MATH  Google Scholar 

  13. H. Amann. On abstract parabolic fundamental solutions. J. Math. Soc. Japan, 39 (1987), 93–116.

    MathSciNet  MATH  Google Scholar 

  14. H. Amann. Dynamic theory of quasilinear parabolic equations — I. Abstract evolution equations. Nonlin. Anal., T.M.ç and A., 12 (1988), 895–919.

    MathSciNet  MATH  Google Scholar 

  15. H. Amann. Parabolic evolution equations and nonlinear boundary conditions. J. Diff. Equ., 72 (1988), 201–269.

    MathSciNet  MATH  Google Scholar 

  16. H. Amann. Parabolic evolution equations in interpolation and extrapolation spaces. J. Funct. Anal., 78 (1988), 233–270.

    MathSciNet  MATH  Google Scholar 

  17. J. Bergh, J. Löfström. Interpolation Spaces. An Introduction. Springer Verlag, Berlin, 1976.

    MATH  Google Scholar 

  18. H. Amann. Dynamic theory of quasilinear parabolic systems-III. Global existence. Math. Z., 202 (1989), 219–250; Erratum 205 (1990), 331.

    MathSciNet  MATH  Google Scholar 

  19. H. Amann. Feedback stabilization of linear and semilinear parabolic systems. In Clément et al., editors, Semigroup Theory and Applications, pages 21–57, Lecture Notes Pure Appl. Math. 116, M. Dekker, New York, 1989.

    Google Scholar 

  20. H. Amann. Global existence and positivity for triangular quasilinear reaction-diffusion systems. 1989. Unpublished manuscript.

    Google Scholar 

  21. H. Amann. Dynamic theory of quasilinear parabolic equations — II. Reaction-diffusion systems. Diff. Int. Equ., 3 (1990), 13–75.

    MathSciNet  MATH  Google Scholar 

  22. H. Amann. Ordinary Differential Equations. An Introduction to Nonlinear Analysis. W. de Gruyter, Berlin, 1990.

    MATH  Google Scholar 

  23. H. Amann. Global existence for a class of highly degenerate parabolic systems. Japan J. Indust. Appl. Math., 8 (1991), 143–151.

    MathSciNet  MATH  Google Scholar 

  24. H. Amann. Highly degenerate quasilinear parabolic systems. Ann. Scuola Norm. Sup. Pisa, Ser. IV, 18 (1991), 135–166.

    Google Scholar 

  25. H. Amann. Hopf bifurcation in quasilinear reaction-diffusion systems. In S. Busenberg, M. Martelli, editors, Delay Differential Equations and Dynamical Systems, Proceedings, Claremont 1990, pages 53–63, Lecture Notes in Math. #1475, Springer Verlag, New York, 1991.

    Google Scholar 

  26. H. Amann. Multiplication in Sobolev and Besov Spaces. In Nonlinear Analysis, A Tribute in Honour of G. Prodi, pages 27–50, Quaderni, Scuola Norm. Sup. Pisa, 1991.

    Google Scholar 

  27. H. Amann. Linear and Quasilinear Parabolic Problems. 1994. Book in preparation.

    Google Scholar 

  28. H. Amann, M. Renardy. Reaction-diffusion problems in electrolysis. Nonlin. Diff. Equ. and Appl., (1993). To appear.

    Google Scholar 

  29. S.B. Angenent. Nonlinear analytic semiflows. Proc. Royal Soc. Edinburgh, 115A (1990), 91–107.

    MathSciNet  MATH  Google Scholar 

  30. J.B. Baillon. Caractère borné de certains genérateurs de semigroupes linéaires dans les espaces de Banach. C.R. Acad. Sc. Paris, 290 (1980), 757–760.

    MathSciNet  MATH  Google Scholar 

  31. A.V. Balakrishnan. Applied Functional Analysis. Springer Verlag, New York, 1976.

    MATH  Google Scholar 

  32. P.W. Bates, S. Zheng. Inertial manifolds and inertial sets for the phase-field equations. 1990. Preprint.

    Google Scholar 

  33. A. Boukricha, M. Sieveking. Why second order parabolic systems? Rocky Mountain J. Math., 16 (1986), 33–54.

    MathSciNet  MATH  Google Scholar 

  34. G. Bourdaud. Analyse Fonctionelle dans l’Espace Euclidien. Pub. Math. Paris VII, Vol. 23, 1987.

    Google Scholar 

  35. G. Bourdaud. Le calcul fonctionnel dans les espaces de Sobolev. Invent. Math., 104 (1991), 435–441.

    MathSciNet  MATH  Google Scholar 

  36. G. Bourdaud, M.E.D. Kateb. Calcul fonctionnel dans l’espace de Sobolev fractionnaire. Math. Z., 210 (1992), 607–613.

    MathSciNet  MATH  Google Scholar 

  37. G. Bourdaud, Y. Meyer. Fonctions qui opèrent sur les espaces de Sobolev. J. Funct. Anal., 97 (1991), 351–360.

    MathSciNet  MATH  Google Scholar 

  38. Ph. Clément, C.J. van Duijn, S. Li. On a nonlinear elliptic-parabolic pde system in a two dimensional ground water flow problem. SIAM J. Appl. Math., 23 (1992), 836–851.

    MATH  Google Scholar 

  39. Ph. Clément, H.J.A.M. Heijmans et al. One-Parameter Semigroups. North-Holl and CWI Monograph, Amsterdam, 1987.

    MATH  Google Scholar 

  40. D.S. Cohen, R.W. Cox. A mathematical model for stress-driven diffusion in polymers. J. Polymer Sci., Part B: Polymer Physics, 27 (1989), 589–602.

    Google Scholar 

  41. D.S. Cohen, A.B. White Jr. Sharp fronts due to diffusion and stress at the glass transition in polymers. J. Polymer Sci., Part B: Polymer Physics, 27 (1989), 1731–1747.

    Google Scholar 

  42. D.S. Cohen, A.B. White Jr. Sharp fronts due to diffusion and viscoelastic relaxation in polymers. SIAM J. Appl. Math., 51 (1991), 472–483.

    MathSciNet  MATH  Google Scholar 

  43. F. Conrad, D. Hilhorst, T. Seidman. On a reaction-diffusion equation with a moving boundary. In P. Bénilan, M. Chipot, L.C. Evans, M. Pierre, editors, Recent advances in nonlinear elliptic and parabolic problems, pages 50–58, Pitman Research Notes in Math. #208, 1989.

    Google Scholar 

  44. CoHS90] F. Conrad, D. Hilhorst, T. Seidman. Well-posedness of a moving boundary problem arising in a dissolution-growth process. Nonlin. Anal., T.M. and A. 15 (1990) 445–465.

    Google Scholar 

  45. J. Crank. The Mathematics of Diffusion. Clarendon Press, Oxford, 1956.

    MATH  Google Scholar 

  46. J. Crank. Free and Moving Boundary Problems. Clarendon Press, Oxford, 1984.

    MATH  Google Scholar 

  47. D. Daners, P. Koch Medina. Abstract Evolution Equations, Periodic Problems and Applications. Pitman Research Notes in Math. #279, Longman Sci. and Tech., Essex, 1992.

    Google Scholar 

  48. G. Da Prato. Abstract differential equations and extrapolation spaces. In Infinite-Dimensional Systems, Retzhof 1988, pages 53–61, Lecture Notes in Math. #1076, Springer Verlag, Berlin, 1984.

    Google Scholar 

  49. G. Da Prato, P. Grisvard. Equations d’évolutions abstraites non linéaires de type parabolique. Ann. Mat. Pura Appl. (4), 120 (1979), 329–396.

    MATH  Google Scholar 

  50. G. Da Prato, P. Grisvard. Maximal regularity for evolution equations by interpolation and extrapolation. J. Fund. Anal., 58 (1984), 107–124.

    MATH  Google Scholar 

  51. R. Dautray, J.-L. Lions. Mathematical Analysis and Numerical Methods for Science and Technology. Springer Verlag, Berlin, 1990.

    Google Scholar 

  52. E.B. Davies. One-Parameter Semigroups. Academic Press, London, 1980.

    MATH  Google Scholar 

  53. D.G. de Figueiredo. The coerciveness for forms over vector valued functions. Comm. Pure Appl. Math., 16 (1963), 63–94.

    MathSciNet  MATH  Google Scholar 

  54. S.R. de Groot, P. Mazur. Non-Equilibrium Thermodynamics. Dover Publications Inc., New York, 1984.

    Google Scholar 

  55. P. Deuring. An initial-boundary value problem for a certain density-dependent diffusion system. Math. Z., 194 (1987), 375–396.

    MathSciNet  MATH  Google Scholar 

  56. G. Dore, A. Favini. On the equivalence of certain interpolation methods. Boll. UMI (7), 1-B (1987), 1227–1238.

    Google Scholar 

  57. G. Dore, A. Venni. On the closedness of the sum of two closed operators. Math. Z., 196 (1987), 189–201.

    MathSciNet  MATH  Google Scholar 

  58. A.-K. Drangeid. Das Prinzip der linearisierten Stabilität bei quasilinearen Evolutionsgleichungen. PhD thesis, Univ. Zürich, Switzerl and, 1988.

    Google Scholar 

  59. A.-K. Drangeid. The principle of linearized stability for quasilinear parabolic evolution equations. Nonlin. Anal., T.M. and A., 13 (1989), 1091–1113.

    MathSciNet  MATH  Google Scholar 

  60. A. El-Fiky. On the well-posedness of the Cauchy problem for p-parabolic systems. J. Math. Kyoto Univ., (I) 27 (1987), 569–586; (II) 28 (1988), 165–172.

    MathSciNet  MATH  Google Scholar 

  61. C.M. Elliott, S. Zheng. Global existence and stability of solutions to the phasefield equations. 1989. Preprint.

    Google Scholar 

  62. J. Escher. Über quasilineare parabolische Systeme. PhD thesis, Univ. Zürich, Switzerl and, 1991.

    Google Scholar 

  63. J. Escher. Nonlinear elliptic systems with dynamic boundary conditions. Math. Z., 210 (1992), 413–439.

    MathSciNet  MATH  Google Scholar 

  64. J. Escher. On the qualitative behavior of some semilinear parabolic problems. Diff. Int. Equ., (1993). To appear.

    Google Scholar 

  65. J. Escher. Quasilinear parabolic systems with dynamical boundary conditions. Comm. Partial Diff. Equ., (1993). To appear.

    Google Scholar 

  66. J. Escher. Smooth solutions of nonlinear systems with dynamic boundary conditions. In Proc. Semigroup Theory and Evol. Equ., Lecture Notes Pure Appl. Math., M. Dekker, New York, 1993. To appear.

    Google Scholar 

  67. A. Fasano, M. Primicerio. General free-boundary problems for the heat equation, III. J. Math. Anal. Appl., 59 (1977), 1–14.

    MathSciNet  MATH  Google Scholar 

  68. A. Fasano, M. Primicerio. Classical solutions of general two-phase parabolic free boundary problems in one dimension. In A. Fasano, M. Primicerio, editors, Free Boundary Problems: Theory and Applications, vol. II, pages 644–657, Pitman Research Notes in Math. #79, Pitman, London, 1983.

    Google Scholar 

  69. A. Fasano, M. Primicerio, S. Kamin. Regularity of weak solutions to one-dimensional two-phase Stefan problems. Ann. Mat. Pura Appl. (4), 115 (1977), 341–348.

    MathSciNet  Google Scholar 

  70. H.O. Fattorini. The Cauchy Problem. Addison-Wesley, Reading, Mass., 1983.

    MATH  Google Scholar 

  71. J. Franke. On the spaces Fi, of Triebel-Lizorkin type: Pointwise multipliers and spaces on domains. Math. achr., 125 (1986), 29–68.

    MathSciNet  MATH  Google Scholar 

  72. G. Geymonat. Su alcuni problemi ai limiti per i sistemi lineari elittici secondo Petrowsky. Le Matematiche, 20 (1965), 211–253.

    MathSciNet  MATH  Google Scholar 

  73. M. Giaquinta. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton Univ. Press, Princeton, N.J., 1983.

    Google Scholar 

  74. M. Giaquinta, G. Modica. Local existence for quasilinear parabolic systems under nonlinear boundary conditions. Ann. Mat. Pura Appl., 149 (1987), 41–59.

    MathSciNet  MATH  Google Scholar 

  75. M. Giaquinta, M. Struwe. An optimal regularity result for a class of quasilinear parabolic systems. Manuscripta Math., 36 (1981), 223–239.

    MathSciNet  MATH  Google Scholar 

  76. M. Goebel. Continuity and Fréchet-differentiabilty of Nemytskii operators in Hölder spaces. Mh. Math., 113 (1992), 107–119.

    MathSciNet  MATH  Google Scholar 

  77. H. Goldberg, W. Kampowsky, F. Tröltzsch. On Nemytskii operators in Lp-spaces of abstract functions. Math. Nachr., 155 (1992), 127–140.

    MathSciNet  MATH  Google Scholar 

  78. J.A. Goldstein. Semigroups of Linear Operators and Applications. Oxford Univ. Press, Oxford, 1985.

    Google Scholar 

  79. P. Grisvard. Équations différentielles abstraites. Ann. Sc. Éc. Norm. Sup., Sér. 4 (1969), 311–395.

    MathSciNet  Google Scholar 

  80. M. Grobbelaar-Van Dalsen. Semilinear evolution equations and fractional powers of a closed pair of operators. Proc. Royal Soc. Edinburgh, 105A (1987), 101–115.

    MATH  Google Scholar 

  81. K. Gröger. A WI,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann., 283 (1989), 679–687.

    MathSciNet  MATH  Google Scholar 

  82. K. Gröger. W1’ -estimates of solutions to evolution equations corresponding to nonsmooth second order elliptic differential operators. Nonlin. Anal., T.M. and A., 18 (1992), 569–577.

    Google Scholar 

  83. K. Gröger, J. Rehberg. Resolvent estimates in W-1°p for second order elliptic differential equations in case of mixed boundary conditions. Math. Ann., 285 (1989), 105–113.

    MathSciNet  MATH  Google Scholar 

  84. D. Guidetti. A maximal regularity result with applications to parabolic problems with nonhomogeneous boundary conditions. Rend. Sem. Mat. Univ. Padova, 84 (1990), 1–37.

    MathSciNet  MATH  Google Scholar 

  85. D. Guidetti. Abstract linear parabolic problems with nonhomogeneous boundary conditions. In Ph. Clément, E. Mitidieri, B. de Pagter, editors, Semigroup Theory and Evolution Equations, pages 227–242, M. Dekker, New York, 1991.

    Google Scholar 

  86. D. Guidetti. On interpolation with boundary conditions. Math. Z., 207 (1991), 439–460.

    MathSciNet  MATH  Google Scholar 

  87. D. Henry. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math. #840, Springer Verlag, Berlin, 1981.

    Google Scholar 

  88. T. Hintermann. Evolutionsgleichungen mit dynamischen R and bedingungen. PhD thesis, Univ. Zürich, Switzerl and, 1988.

    Google Scholar 

  89. T. Hintermann. Evolution equations with dynamic boundary conditions. Proc. Royal Soc. Edinburgh, 113A (1989), 43–60.

    MathSciNet  MATH  Google Scholar 

  90. G. Jameson. Ordered Linear Spaces. Lecture Notes in Math. #141, Springer Verlag, Berlin, 1970.

    Google Scholar 

  91. B. Jawerth, M. Milman. Extrapolation Theory with Applications. Memoirs AMS, Vol. 89, #440, 1991.

    Google Scholar 

  92. J. Kacur. Nonlinear parabolic equations with the mixed nonlinear and nonstationary boundary conditions. Math. Slovaca, 30 (1980), 213–237.

    MathSciNet  MATH  Google Scholar 

  93. J.U. Kim. Smooth solutions to a quasilinear system of diffusion equations for a certain population model. Nonlin. Anal., T.M.é.M., 8 (1984), 1121–1144.

    MATH  Google Scholar 

  94. P. Koch Medina. Feedback stabilization of time-periodic parabolic equations. PhD thesis, Univ. Zürich, Switzerl and, 1992.

    Google Scholar 

  95. M.A. Krasnosel’skii. Topological Methods in the Theory of Nonlinear Integral Equations. Pergamon Press, Oxford, 1964.

    Google Scholar 

  96. A. Kufner, O. John, S. Fucik. Function Spaces. Academia, Prague, 1977.

    MATH  Google Scholar 

  97. O.A. Ladyzenskaja, V.A. Solonnikov, N.N. Ural’ceva. Linear and Quasilinear Equations of Parabolic Type. Amer. Math. Soc., Transl. Math. Monographs, Providence, R.I., 1968.

    Google Scholar 

  98. O.A. Ladyzenskaja, N.N. Ural’ceva. A boundary value problem for linear and quasi-linear parabolic equations. Amer. Math. Soc. Transl., Ser. 2, 47 (1965), 217–299.

    Google Scholar 

  99. O.A. Ladyzenskaja, N. N. Ural’ceva. A boundary value problem for linear and quasi-linear equations and systems of parabolic type. III. Amer. Math. Soc. Transi., Ser. 2, 56 (1966), 103–192.

    Google Scholar 

  100. J. Newman. Engineering design of electrochemical systems. Indust. Engineering Chemistry, 60 (1968), 12–27.

    Google Scholar 

  101. O.A. Ladyzenskaja, N.N. Ural’ceva. On the Hölder continuity of solutions and their derivatives for linear and quasi-linear equations of elliptic and parabolic types. Amer. Math. Soc. Transl., Ser. 2, 61 (1967), 207–269.

    Google Scholar 

  102. I. Lasiecka. Unified theory for abstract parabolic boundary problems — a semigroup approach. Appl. Math. Optim., 6 (1980), 287–333.

    MathSciNet  MATH  Google Scholar 

  103. S. Li. Quasilinear evolution problems. PhD thesis, TH Delft, Holl and, 1992.

    Google Scholar 

  104. J.-L. Lions. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, 1969.

    Google Scholar 

  105. LiM60] J.-L. Lions, E. Magenes. Problemi ai limiti non omogenei (I–VII). Ann. Scuola Norm. Sup. Pisa, (I) 14 (1960), 259–308; (III) 15 (1961), 39–101; (IV) 15 (1961), 311–326; (V) 16 (1962), 1–44. Ann. Inst. Fourier, (II) 11 (1961), 137–178. J. d’Analyse Math., (VI) 11 (1963), 165–188. Ann. Mat. Pura Appl. 4, (VII) 63 (1963), 201–224.

    Google Scholar 

  106. J.-L. Lions, E. Magenes. Non-Homogeneous Boundary Value Problems and Applications I, II, III. Springer Verlag, Berlin, 1972, 1973.

    Google Scholar 

  107. Gui-Zhang Liu. Evolution Equations and Scales of Banach Spaces. PhD thesis, Univ. Eindhoven, Holl and, 1989.

    Google Scholar 

  108. A. Lunardi. On the local dynamical system associated to a fully nonlinear abstract parabolic equation. In V. Lakshmikantam, editor, Nonl. Analysis and Appl., pages 319–326, M. Dekker, New York, 1987.

    Google Scholar 

  109. A. Lunardi. Maximal space regularity in nonhomogeneous initial boundary value parabolic problems. Num. Funct. Anal. and Optim., 10 (1989), 323–349.

    MathSciNet  MATH  Google Scholar 

  110. A. Lunardi. An introduction to geometric theory of fully nonlinear parabolic equations. In T.T. Li, P. de Mottoni, editors, Qualitative Aspects and Applications of Nonlinear Evolution Equations, pages 107–131, World Scientific, Singapore, 1991.

    Google Scholar 

  111. A. Lunardi, E: Sinestrari, W. von Wahl. A semigroup approach to time dependent parabolic initial boundary value problems. Diff. Int. Equ. 5 (1992)., 1275–1306.

    Google Scholar 

  112. A. Lunardi, V. Vespri. Hölder regularity in variational parabolic nonhomogeneous equations. J. Diff. Equ., 94 (1991), 1–40.

    MathSciNet  MATH  Google Scholar 

  113. V.G. Maz’ya, T.O. Shaposhnikova. Theory of Multipliers in Spaces of Differentiable Functions. Pitman, Boston, 1985.

    MATH  Google Scholar 

  114. R. Nagel. Sobolev spaces and semigroups. Semesterbericht Funktionalanalysis Tübingen, (1983), 1–20.

    Google Scholar 

  115. J. Necas. Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967.

    MATH  Google Scholar 

  116. P. Oswald. On the boundedness of the mapping f if in Besov spaces. (1992). Preprint.

    Google Scholar 

  117. A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer Verlag, New York, 1983.

    MATH  Google Scholar 

  118. O. Penrose, P.C. Fife. Thermodynamically consistent models of phase-field type for kinetics of phase transitions. Physica D, 43 (1990), 44–62.

    MathSciNet  MATH  Google Scholar 

  119. M.A. Pozio, A. Tesei. Global existence of solutions for a strongly coupled quasilinear parabolic system. Nonlin. Anal., T.M. and A., 14 (1990), 657–689.

    MathSciNet  MATH  Google Scholar 

  120. J. Prüss, H. Sohr. Imaginary powers of elliptic second order differential operators in LP-spaces. Hiroshima Math. J. (1993). To appear.

    Google Scholar 

  121. R. Redlinger. Pointwise a-priori bounds for strongly coupled semilinear problems. Indiana Univ. Math. J., 36 (1987), 441–454.

    MathSciNet  MATH  Google Scholar 

  122. R. Redlinger. Invariant sets for strongly coupled reaction-diffusion systems under general boundary conditions. Arch. Rat. Mech. Anal., 108 (1989), 281–291.

    MathSciNet  MATH  Google Scholar 

  123. R. Redlinger. Existence of the global attractor for a strongly coupled parabolic system arising in population dynamics. 1992. Preprint.

    Google Scholar 

  124. F. Rothe. Global Solutions of Reaction-Diffusion Systems. Lecture Notes in Math. #1072, Springer Verlag, Berlin, 1984.

    Google Scholar 

  125. I. Rousar, K. Micka, A. Kimla. Electrochemical Engineering. Elsevier, Amsterdam, 1986.

    Google Scholar 

  126. L.I. Rubinstein. The Stefan Problem. Amer. Math. Soc., Transi. Math. Monographs, Providence, R.I., 1971.

    Google Scholar 

  127. Th. Runst. Mapping properties of non-linear operators in spaces of Triebel-Lizorkin and Besov type. Anal. Math., 12 (1986), 313–346.

    MathSciNet  MATH  Google Scholar 

  128. T. Sadamatsu. A property of an analytic semigroup. J. Math. Kyoto Univ., 31 (1991), 931–936.

    MathSciNet  MATH  Google Scholar 

  129. H.H. Schaefer. Topological Vector Spaces. Springer Verlag, New York, 1971.

    Google Scholar 

  130. R. Seeley. Norms and domains of the complex powers A.B. Amer. J. Math., 93 (1971), 299–309.

    MathSciNet  MATH  Google Scholar 

  131. R. Seeley. Interpolation in LP with boundary conditions. Stud. Math., 44 (1972), 47–60.

    MathSciNet  MATH  Google Scholar 

  132. N. Shigesada, K. Kawasaki, E. Teramoto. Spacial segregation of interacting species. J. theor. Biology, 79 (1979), 83–99.

    MathSciNet  Google Scholar 

  133. R. Showalter. Degenerate evolution equations. Indiana Univ. Math. J., 23 (1974), 655–677.

    MathSciNet  MATH  Google Scholar 

  134. K. Taira. Boundary Value Problems and Markov Processes. Lecture Notes in Math. #1499, Springer Verlag, Berlin, 1991.

    Google Scholar 

  135. Sic86] W. Sickel. On pointwise multipliers in Besov-Triebel-Lizorkin spaces. In B.W.

    Google Scholar 

  136. Schulze, H. Triebei, editors, Seminar Analysis, pages 45–103, Teubner, Leipzig, 1986.

    Google Scholar 

  137. W. Sickel. On boundedness of superposition operators in spaces of Triebel-Lizorkin type. Czechoslovak Math. J., 39 (1989), 323–347.

    MathSciNet  Google Scholar 

  138. W. Sickel. Superposition of functions in Sobolev spaces of fractional order. A survey. Banach Center Publ., Partial Dif Equ., 27 (1992), 481–497.

    MathSciNet  Google Scholar 

  139. W. Sickel. Pointwise multiplication in Triebel-Lizorkin spaces. Forum Math., 5 (1993), 73–91.

    MathSciNet  MATH  Google Scholar 

  140. C.G. Simader. On Dirichlet’s Boundary Value Problem. Lecture Notes in Math. #268, Springer Verlag, 1972.

    Google Scholar 

  141. G. Simonett. Zentrumsmannigfaltigkeiten für quasilineare parabolische Gleichungen. PhD thesis, Univ. Zürich, Switzerl and, 1992.

    Google Scholar 

  142. G. Simonett. Center manifolds for quasilinear reaction-diffusion systems. 1993. Preprint.

    Google Scholar 

  143. G. Simonett. Quasilinear parabolic equations and semiflows. In Proc. SemigroupTheory ê4 Evol. Equ., Lecture Notes Pure Appl. Math., M. Dekker, New York, 1993. To appear.

    Google Scholar 

  144. M.G. Slinko, K. Hartmann. Methoden und Programme zur Berechnung chemischer Reaktoren. Akademie Verlag, Berlin, 1972.

    Google Scholar 

  145. P.E. Sobolevskii. Coerciveness inequalities for abstract parabolic equations. Soviet Math. (Doklady), 5 (1964), 894–897.

    Google Scholar 

  146. P.E. Sobolevskii. Equations of parabolic type in a Banach space. Amer. Math. Soc. Transi., Ser. 2, 49 (1966), 1–62.

    Google Scholar 

  147. V.A. Solonnikov. On boundary value problems for linear parabolic systems of differential equations of general form. Proc. Steklov Inst. Math., 83 (1965), 1184.

    Google Scholar 

  148. J. Sprekels, S. Zheng. Global smooth solutions to a thermodynamically consistent model of phase-field type in higher space dimensions. J. Math. Anal. Appl., (1992). To appear.

    Google Scholar 

  149. J. Starâ, O. John, J. Mali. Counterexample to the regularity of weak solution of the quasilinear parabolic system. Commentationes Math. Univ. Carolina e, 27 (1986), 123–136.

    MATH  Google Scholar 

  150. M. Struwe. A counterexample in regularity theory for parabolic systems. Czechoslovak Math. J., 34 (1984), 183–188.

    MathSciNet  Google Scholar 

  151. F.B. Weissler. Local existence and nonexistence for semilinear parabolic equations in L“. Indiana Univ. Math. J., 29 (1980), 79–102.

    MathSciNet  MATH  Google Scholar 

  152. H. Tanabe. On the equation of evolution in a Banach space. Osaka Math. J., 12 (1960), 363–376.

    MathSciNet  MATH  Google Scholar 

  153. H. Tanabe. Equations of Evolution. Pitman, London, 1979.

    MATH  Google Scholar 

  154. D.A. Tarzia. A bibliography on moving-free boundary problems for the heatdiffusion equation. The Stefan problem. Progetto Nazionale M.P.I.: Equ. evol. e appl. fisico-mat., Firenze, 1988.

    Google Scholar 

  155. B. Terreni. Non-homogeneous initial-boundary value problems for linear parabolic systems. Stud. Math., 92 (1989), 141–175.

    MathSciNet  MATH  Google Scholar 

  156. H. Triebel. Interpolation Theory, Function Spaces, Differential Operators. North Holl and, Amsterdam, 1978.

    Google Scholar 

  157. H. Triebel. Theory of Function Spaces. Birkhäuser, Basel, 1983.

    Google Scholar 

  158. H. Triebel. Function Spaces II. Birkhäuser, Basel, 1992.

    MATH  Google Scholar 

  159. R. Triggiani. Boundary feedback stabilizability of parabolic equations. Appl. Math. Optim., 6 (1980), 201–220.

    MathSciNet  MATH  Google Scholar 

  160. M.M. Vainberg. Variational Methods for the Study of Nonlinear Operators. Holden-Day, San Francisco, 1964.

    MATH  Google Scholar 

  161. V. Vespri. The functional space C-1,a and analytic semigroups. Diff. Int. Equ., 1 (1988), 473–493.

    MathSciNet  MATH  Google Scholar 

  162. V. Vespri. Analytic semigroups generated in H—m,p by elliptic variational operators and applications to linear Cauchy problems. In Clément et al., editors, Semigroup Theory and Applications, pages 419–431, Lecture Notes Pure Appl. Math. 116, M. Dekker, New York, 1989.

    Google Scholar 

  163. V. Vespri. Abstract quasilinear parabolic equations with variable domains. Diff. Int. Equ., 4 (1991), 1041–1072.

    MathSciNet  MATH  Google Scholar 

  164. W. von Wahl. The Equations of Navier-Stokes and Abstract Parabolic Equations. Vieweg and Sohn, Braunschweig, 1985.

    Google Scholar 

  165. W. von Wahl. On the Cahn-Hilliard equation u’ O2u — A f (u) = 0. Delft Progress Report, 10 (1985), 291–310.

    MathSciNet  Google Scholar 

  166. W. von Wahl. Abschätzungen für das Neumann-Problem and die Helmholtz-Zerlegung von L“. Nachr. Akad. Wiss. Göttingen, II. Math.-Phys. Klasse, (1990), 9–37.

    Google Scholar 

  167. Th. Walther. Abstrakte Sobolev-Räume und ihre Anwendungen auf die Störungstheorie für Generatoren von C o —Halbgruppen. PhD thesis, Univ. Tübingen, Germany, 1986.

    Google Scholar 

  168. M. Wiegner. Global solutions to a class of strongly coupled parabolic systems. Math. Ann., 292 (1992), 711–727.

    MathSciNet  MATH  Google Scholar 

  169. A. Yagi. Fractional powers of operators and evolution equations of parabolic type. Proc. Japan Acad., Ser. A, 64 (1988), 227–230.

    MathSciNet  MATH  Google Scholar 

  170. A. Yagi. Parabolic evolution equations in which the coefficients are the generators of infinitely differentiable semigroups. II. Funkcial Ekvac., 33 (1990), 139–150.

    MathSciNet  MATH  Google Scholar 

  171. A. Yagi. Abstract quasilinear evolution equations of parabolic type in Banach spaces. Boll. UMI, 5-B (1991), 341–368.

    Google Scholar 

  172. A. Yagi. Global solution of some quasilinear parabolic systems in population dynamics. 1992. Preprint.

    Google Scholar 

  173. S. Zheng. Global existence for a thermodynamically consistent model of phase field type. Dif. Int. Equ., 5 (1992), 241–253.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Amann, H. (1993). Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems. In: Schmeisser, HJ., Triebel, H. (eds) Function Spaces, Differential Operators and Nonlinear Analysis. Teubner-Texte zur Mathematik, vol 133. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-11336-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-11336-2_1

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-8154-2045-4

  • Online ISBN: 978-3-663-11336-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics