Skip to main content
Log in

Measure Solutions for Some Models in Population Dynamics

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We give a direct proof of well-posedness of solutions to general selection-mutation and structured population models with measures as initial data. This is motivated by the fact that some stationary states of these models are measures and not L 1 functions, so the measures are a more natural space to study their dynamics. Our techniques are based on distances between measures appearing in optimal transport and common arguments involving Picard iterations. These tools provide a simplification of previous approaches and are applicable or adaptable to a wide variety of models in population dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackleh, A.S., Fitzpatrick, B.G., Thieme, H.R.: Rate distributions and survival of the fittest: a formulation on the space of measures. Discrete Contin. Dyn. Syst., Ser. B 5(4), 917–928 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arendt, W., Grabosch, A., Greiner, G., Groh, U., Lotz, H.P., Moustakas, U., Nagel, R., Neubrander, F., Schlotterbeck, U.: One-Parameter Semigroups of Positive Operators. Lecture Notes in Mathematics, vol. 1184. Springer, Berlin (1986)

    MATH  Google Scholar 

  3. Bürger, R.: The Mathematical Theory of Selection, Recombination, and Mutation. Wiley Series in Mathematical and Computational Biology. Wiley, Chichester (2000)

    MATH  Google Scholar 

  4. Bürger, R., Bomze, I.M.: Stationary distributions under mutation-selection balance: structure and properties. Adv. Appl. Probab. 28(1), 227–251 (1996)

    Article  MATH  Google Scholar 

  5. Calsina, A., Cuadrado, S.: Small mutation rate and evolutionarily stable strategies in infinite dimensional adaptive dynamics. J. Math. Biol. 48, 135–159 (2004). doi:10.1007/s00285-003-0226-6

    Article  MathSciNet  MATH  Google Scholar 

  6. Calsina, A., Cuadrado, S., Desvillettes, L., Raoul, G.: Asymptotics of steady states of a selection-mutation equation for small mutation rate. Preprint (2011)

  7. Calsina, A., Palmada, J.M.: Steady states of a selection-mutation model for an age structured population. Preprint Universitat Autònoma de Barcelona, No. 33 (2011)

  8. Cañizo, J.A., Carrillo, J.A., Rosado, J.: A well-posedness theory in measures for some kinetic models of collective motion. Math. Models Methods Appl. Sci. 21(3), 515–539 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carrillo, J.A., Colombo, R.M., Gwiazda, P., Ulikowska, A.: Structured populations, cell growth and measure valued balance laws. J. Differ. Equ. 252(4), 3245–3277 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cleveland, J.: Evolutionary game theory on measure spaces. Ph.D. thesis, University of Louisiana at Lafayette (2010)

  11. Cressman, R., Hofbauer, J.: Measure dynamics on a one-dimensional continuous trait space: theoretical foundations for adaptive dynamics. Theor. Popul. Biol. 67(1), 47–59 (2005)

    Article  MATH  Google Scholar 

  12. Crow, J.F., Kimura, M.: The theory of genetic loads. In: Proc. XIth Int. Congr. Genetics, pp. 495–505 (1964)

    Google Scholar 

  13. Cuadrado, S.: Equilibria of a predator prey model of phenotype evolution. J. Math. Anal. Appl. 354(1), 286–294 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Diekmann, O., Gyllenberg, M., Metz, J.A.J., Thieme, H.R.: On the formulation and analysis of general deterministic structured population models. I. Linear theory. J. Math. Biol. 36(4), 349–388 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Diekmann, O., Metz, J.A.J. (eds.): The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics, vol. 68. Springer, Berlin (1986). Papers from the colloquium held in Amsterdam (1983)

    MATH  Google Scholar 

  16. Dobrushin, R.L.: Vlasov equations. Funct. Anal. Appl. 13(2), 115–123 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gwiazda, P., Lorenz, T., Marciniak-Czochra, A.: A nonlinear structured population model: Lipschitz continuity of measure-valued solutions with respect to model ingredients. J. Differ. Equ. 248(11), 2703–2735 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gwiazda, P., Marciniak-Czochra, A.: Structured population equations in metric spaces. J. Hyperbolic Differ. Equ. 7(4), 733–773 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Magal, P.: Mutation and recombination in a model of phenotype evolution. J. Evol. Equ. 2(1), 21–39 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Metz, J.A.J., Diekmann, O.: The Dynamics of Physiologically Structured Populations, 1st edn. Lecture notes in Biomathematics, vol. 68. Springer, Berlin (1986)

    MATH  Google Scholar 

  21. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    Book  MATH  Google Scholar 

  22. Perthame, B.: Transport Equations in Biology. Frontiers in Mathematics. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  23. Spohn, H.: Large Scale Dynamics of Interacting Particles. Texts and Monographs in Physics. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  24. Tucker, S.L., Zimmerman, S.O.: A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables. SIAM J. Appl. Math. 48(3), 549–591 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. Am. Math. Soc., Providence (2003)

    MATH  Google Scholar 

  26. Webb, G.: Population models structured by age, size, and spatial position. In: Magal, P., Ruan, S. (eds.) Structured Population Models in Biology and Epidemiology. Lecture Notes in Mathematics, vol. 1936, pp. 1–49. Springer, Berlin (2008)

    Chapter  Google Scholar 

  27. Webb, G.F.: Theory of Nonlinear Age-Dependent Population Dynamics. Monographs and Textbooks in Pure and Applied Mathematics, vol. 89. Dekker, New York (1985)

    MATH  Google Scholar 

  28. Webb, G.F.: Structured Population Dynamics. Banach Center Publ., vol. 63. Polish Acad. Sci., Warsaw (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Cañizo.

Additional information

The authors were partially supported by the Ministerio de Ciencia e Innovación, grant MTM2011-27739-C04-02, and by the Agència de Gestió d’Ajuts Universitaris i de Recerca-Generalitat de Catalunya, grant 2009-SGR-345.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cañizo, J.A., Carrillo, J.A. & Cuadrado, S. Measure Solutions for Some Models in Population Dynamics. Acta Appl Math 123, 141–156 (2013). https://doi.org/10.1007/s10440-012-9758-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-012-9758-3

Keywords

Mathematics Subject Classification

Navigation