Skip to main content
Log in

Uniqueness Problem for SPDEs from Population Models

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

This is a survey on the strong uniqueness of the solutions to stochastic partial differential equations (SPDEs) related to two measure-valued processes: superprocess and Fleming-Viot process which are given as rescaling limits of population biology models. We summarize recent results for Konno-Shiga-Reimers’ and Mytnik’s SPDEs, and their related distribution-function-valued SPDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiong J, Yang X. Superprocesses with interaction and immigration. Stochastic Process Appl, 2016, 126: 3377–3401

    Article  MathSciNet  MATH  Google Scholar 

  2. Li Z. Measure-Valued Branching Markov Processes[M]. Berlin: Springer, 2011

    Book  MATH  Google Scholar 

  3. Watanabe S. A limit theorem of branching processes and continuous state branching processes. J Math Kyoto Univ, 1968, 8: 141–167

    Article  MathSciNet  MATH  Google Scholar 

  4. Dawson D A. Stochastic evolution equations and related measure processes. J Multivariate Anal, 1975, 5: 1–52

    Article  MathSciNet  MATH  Google Scholar 

  5. Fleming W H, Viot M. Some measure-valued Markov processes in population genetics theory. Indiana Univ Math J, 1979, 28: 817–843

    Article  MathSciNet  MATH  Google Scholar 

  6. Etheridge A. An introduction to superprocesses[M]. American Mathematical Society. University Lecture Series, 20: 2000

    Book  MATH  Google Scholar 

  7. Li Z. Immigration processes associated with branching particle systems. Adv in Appl Probab, 1998, 30: 657–675

    Article  MathSciNet  MATH  Google Scholar 

  8. Pardox E, Peng S. Backward doubly stochastic differential equations and systems of quasilimear SPDEs. Probab. Theory Related Fields, 1994, 98: 209–227

    Article  MathSciNet  Google Scholar 

  9. He H, Li Z, Yang X. Stochastic equations of super-Levy processes with general branching mechanism. Stochastic Process Appl, 2014, 124: 1519–1565

    Article  MathSciNet  MATH  Google Scholar 

  10. Ikeda N, Watanabe S. Stochastic Differential Equations and Diffusion Processes[M]. 2nd Ed. Amsterdam: North-Holland; Tokyo: Kodansha, 1989

    MATH  Google Scholar 

  11. Xu W. Backward doubly stochastic equations with jumps and comparison theorems. J Math Anal Appl, 2016, 443: 596–624

    Article  MathSciNet  MATH  Google Scholar 

  12. Konno N, Shiga T. Stochastic partial differential equations for some measure-valued diffusions. Probab Theory Related Fields, 1988, 79: 201–225

    Article  MathSciNet  MATH  Google Scholar 

  13. Reimers M. One dimensional stochastic differential equations and the branching measure diffusion[J]. Probab. Theory Related Fields, 1989, 81: 319–340

    Article  MathSciNet  MATH  Google Scholar 

  14. Mytnik L, Perkins E, Sturm A. On pathwise uniqueness for stochastic heat equations with non-Lipschitz coefficients[J]. Ann Probab, 2006, 34: 1910–1959

    Article  MathSciNet  MATH  Google Scholar 

  15. Rippl T, Sturm A. New results on pathwise uniqueness for the heat equation with colored noise[J]. Electron J Probab, 2013, 18: 1–46

    Article  MathSciNet  MATH  Google Scholar 

  16. Watanabe S, Yamada T. On the uniqueness of solutions of stochastic differential equations[J]. J Math Kyoto Univ, 1971, 11: 553–563

    Article  MathSciNet  MATH  Google Scholar 

  17. Neuman E. Pathwise uniqueness of the stochastic heat equations with spatially inhomogeneous white noise[J]. Submitted. ArXiv:1403.4491, 2014

  18. Mytnik L, Perkins E. Pathwise uniqueness for stochastic heat equations with Holder continuous coefficients: the white noise case[J]. Probab Theory Related Fields, 2011, 149: 1–96

    Article  MathSciNet  MATH  Google Scholar 

  19. Mytnik L, Neuman E. Pathwise uniqueness for the stochastic heat equation with Holder continuous drift and noise coefficients[J]. Stochastic Process Appl, 2015, 125: 3355–3372

    Article  MathSciNet  MATH  Google Scholar 

  20. Burdzy K, Mueller C, Perkins E A. Nonuniqueness for nonnegative solutions of parabolic stochastic partial differential equations[J]. Illinois J Math, 2011, 54: 1481–1507

    Article  MathSciNet  MATH  Google Scholar 

  21. Mueller C, Mytnik L, Perkins E. Nonuniqueness for a parabolic SPDE with \({\textstyle{3 \over 4}}\)-ε-Hö1der diffusion coefficients[J]. Ann Probab, 2014, 42: 2032–2112

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen Y. Pathwise uniqueness for the SPDE’s of some super-Brownian motion with immigration[J]. Ann Probab, 2015, 43: 3359–3467

    Article  MathSciNet  MATH  Google Scholar 

  23. Mueller C, Mytnik L, Perkins E. On the boundary of the support ofsuper-Brownian motion[J]. Ann Probab, 2017, 45: 3481–3534

    Article  MathSciNet  MATH  Google Scholar 

  24. Mytnik L. Stochastic partial differential equation driven by stable noise[J]. Probab Theory Related Fields, 2003, 123: 157–201

    Article  MathSciNet  MATH  Google Scholar 

  25. Mytnik L, Perkins E. Regularity and irregularity of (1 + β)-stable super-Brownian motion[J]. Ann Probab, 2003, 31: 1413–1440

    Article  MathSciNet  MATH  Google Scholar 

  26. Fleischmann K, Mytnik L, Wachtel V. Optimal local Hölder index for density states of superprocesses with 1 + β-branching mechanism[J]. Ann Probab, 2010, 38: 1180–1220

    Article  MathSciNet  MATH  Google Scholar 

  27. Fleischmann K, Mytnik L, Wachtel V. Holder index at a given point for density states of super-a-stable motion of index 1 + β[J]. J Theoret Probab, 2011, 24: 66–92

    Article  MathSciNet  MATH  Google Scholar 

  28. Mytnik L, Wachtel V. Multifractal analysis of superprocesses with stable branching in dimension one[J]. Ann Probab, 2015, 43: 2763–2809

    Article  MathSciNet  MATH  Google Scholar 

  29. Mytnik L, Wachtel V. Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism[M]. Springer International Publishing, 2017

    MATH  Google Scholar 

  30. Yang X, Zhou X. Pathwise uniqueness for an SPDE with Hölder continuous coefficient driven by α-stable noise[J]. Electron J Probab, 2017, 22: 1–48

    Article  Google Scholar 

  31. Yang X, Zong G. Stable branching super-Levy process as the pathwise unique solution to an SPDE (in Chinese)[J]. Sci Sin Math, 2019, 49: 699–716

    Article  Google Scholar 

  32. Xiong J, Yang X. Existence and pathwise uniqueness to an SPDE driven by a-stable colored noise[J]. Stochastic Process Appl, 2019 (to appear)

  33. Mueller C. The heat equation with Lévy noise[J]. Stochastic Process Appl, 1998, 74: 67–82

    Article  MathSciNet  MATH  Google Scholar 

  34. Saint Loubert Bié E. Étude dune EDPS conduite par un bruit poissonnien[J]. Probab Theory Related Fields, 1998, 111: 287–321

    Article  MathSciNet  MATH  Google Scholar 

  35. Albeverio S, Wu J, Zhang T. Parabolic SPDEs driven by Poisson white noise[J]. Stochastic Process Appl, 1998, 74: 21–36

    Article  MathSciNet  MATH  Google Scholar 

  36. Applebaum D, Wu J. Stochastic partial differential equations driven by Levy space-time white noise[J]. Random Oper Stoch Equ, 2000, 8: 245–259

    Article  MATH  Google Scholar 

  37. Chen Z, Zhang T. Stochastic evolution equations driven by Lévy processes[J]. Osaka J Math, 2011, 48: 311–327

    MathSciNet  MATH  Google Scholar 

  38. Peszat S, Zabczyk J. Stochastic Partial Differential Equations with Lévy Noise[M]. Cambridge: Cambridge University Press, 2007

    Book  MATH  Google Scholar 

  39. Xiong J. Super-Brownian motion as the unique strong solution to an SPDE[J]. Ann Probab, 2013, 41: 1030–1054

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang L, Yang X, Zhou X. A distribution-function-valued SPDE and its applications[J]. J Differential Equations, 2017, 262: 1085–1118

    Article  MathSciNet  MATH  Google Scholar 

  41. Li Z, Liu H, Xiong J, Zhou X. Some properties of the generalized Fleming-Viot processes[J]. Stochastic Process Appl, 2013, 123: 4129–4155

    Article  MathSciNet  MATH  Google Scholar 

  42. Li Z, Yang X, Zong G. General super-Levy processes in random environments (in Chinese)[J]. Submitted, 2018

  43. Mytnik L, Xiong J. Well-posedness of the martingale problem for superprocess with interaction[J]. Illinois J Math, 2015, 59: 485–497

    Article  MathSciNet  MATH  Google Scholar 

  44. Dawson D A, Li Z. Stochastic equations, flows and measure-valued processes[J]. Ann Probab, 2012, 40: 813–857

    Article  MathSciNet  MATH  Google Scholar 

  45. Dawson D A, Li Z. Skew convolution semigroups and affine Markov processes[J]. Ann Probab, 2006, 34: 1103–1142

    Article  MathSciNet  MATH  Google Scholar 

  46. Xiong J. Three Classes of Nonlinear Stochastic Partial Differential Equations[M]. Singapore: World Scientific, 2013

    Book  MATH  Google Scholar 

  47. Gomez A, Lee K, Mueller C, Wei A, Xiong J. Strong uniqueness for an spde via backward doubly stochastic differential equations[J]. Statist Probab Lett, 2013, 83: 2186–2190

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Xiong or Xu Yang.

Additional information

Supported partially by SUST startup fund 28/Y01286120, NSF of Ningxia (2018AAC03245), NSFC (11771018), and First-Class Disciplines Foundation Ningxia (NXYLXK2017B09).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, J., Yang, X. Uniqueness Problem for SPDEs from Population Models. Acta Math Sci 39, 845–856 (2019). https://doi.org/10.1007/s10473-019-0313-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-019-0313-4

Key words

2010 MR Subject Classification

Navigation