Skip to main content
Log in

Numerical Simulation of Phase Transitions in Type-II Annular Superconductor Using Time-dependent Ginzburg-Landau Equations

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Time-dependent Ginzburg-Landau equations were solved by finite element method in two-dimensional space for order parameter and energy components of the annular superconducting sample in steady magnetic fields. Vortices preferred to penetrate from the inner surface of the annulus due to lesser energy required at the concave surface. A transition magnetic field strength was observed in spatial averages of carrier concentration and energy components, showing small bumps and abrupt variations, indicating phase transition from a non-vortex to vortex state. These effects were observed to repeat with every subsequent entry of a set of vortices into the sample; transition magnetic field strength was found to depend inversely on the annular width of the sample. The present work gives a better understanding of energy variations during phase transition from non-vortex to vortex state and predicts that vortex state can be avoided by tuning the wire thickness in practical applications, e.g., superconducting electromagnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zha, G.-Q., et al.: Superconducting phase transitions in thin mesoscopic rings with enhanced surface superconductivity. Phys. Rev. B 74(2), 024527 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  2. Zhao, H.-W., et al.: Long-range Coulomb repulsion effect on a charged vortex in high-temperature superconductors with competing d-wave and antiferromagnetic orders. Phys. Rev. B 78(5), 064505 (2008)

    Article  ADS  Google Scholar 

  3. Du, Q., Gunzburger, M.D., Peterson, J.S.: Solving the Ginzburg-Landau equations by finite-element methods. Phys. Rev. B 46(14), 9027 (1992)

    Article  ADS  Google Scholar 

  4. Baelus, B., Peeters, F.: Dependence of the vortex configuration on the geometry of mesoscopic flat samples. Phys. Rev. B 65(9), 104515 (2002)

    Article  ADS  Google Scholar 

  5. Peng, L., et al.: Variation of vortex charges in hole over-doped high-temperature superconductors with competing anti-ferromagnetic and d-wave superconducting order. J. Low Temp. Phys. 170(1-2), 91–98 (2013)

    Article  ADS  Google Scholar 

  6. Abrikosov, A.A. Magnetic properties of superconductors of the second group. Sov. Phys.-JETP (Engl. Transl.);(United States), 1957. 5(5)

  7. Baelus, B.J., Cabral, L.R.E., Peeters, F.M.: Vortex shells in mesoscopic superconducting disks. Phys. Rev. B 69(5), 064506 (2004)

    Article  ADS  Google Scholar 

  8. Geurts, R., et al.: Enhanced stability of vortex-antivortex states in two-component mesoscopic superconductors. Phys. Rev. B 87(2), 024501 (2013)

    Article  ADS  Google Scholar 

  9. Moshchalkov, V., Qiu, X., Bruyndoncx, V.: Paramagnetic Meissner effect from the self-consistent solution of the Ginzburg-Landau equations. Phys. Rev. B 55(17), 11793 (1997)

    Article  ADS  Google Scholar 

  10. Geurts, R., Milošević, M., Peeters, F.: Symmetric and asymmetric vortex-antivortex molecules in a fourfold superconducting geometry. Phys. Rev. Lett. 97(13), 137002 (2006)

    Article  ADS  Google Scholar 

  11. Kanda, A., et al.: Experimental evidence for giant vortex states in a mesoscopic superconducting disk. Phys. Rev. Lett. 93(25), 257002 (2004)

    Article  ADS  Google Scholar 

  12. Geim, A.K., et al.: Paramagnetic Meissner effect in small superconductors. Nature 396(6707), 144–146 (1998)

    Article  ADS  Google Scholar 

  13. Chibotaru, L.F., et al.: Symmetry-induced formation of antivortices in mesoscopic superconductors. Nature 408(6814), 833 (2000)

    Article  ADS  Google Scholar 

  14. Geim, A., et al.: Non-quantized penetration of magnetic field in the vortex state of superconductors. arXiv:cond-mat/0009126 (2000)

  15. Bezryadin, A., Ovchinnikov, Y.N., Pannetier, B.: Nucleation of vortices inside open and blind microholes. Phys. Rev. B 53(13), 8553 (1996)

    Article  ADS  Google Scholar 

  16. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Microscopic theory of superconductivity. Phys. Rev. 106(1), 162 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ginzburg, V.: On the theory of superconductivity. Zh. Eksper. Teor. Fiz. 20, 1064–1082 (1950)

    Google Scholar 

  18. Anderson, P.W.: Plasmons, gauge invariance, and mass. Phys. Rev. 130(1), 439 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  19. Englert, F., Brout, R.: Nobel prize in physics: discovery of the Higgs boson and the symmetry breaking theory that predicted it. Phys. Rev. Lett 1964(13), 321 (2013)

    Google Scholar 

  20. Guralnik, G.S., Hagen, C.R., Kibble, T.W.B.: Global conservation laws and massless particles. Phys. Rev. Lett. 13(20), 585 (1964)

    Article  ADS  Google Scholar 

  21. Higgs, P.W.: Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13(16), 508 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  22. Meissner, W., Ochsenfeld, R.: Ein neuer effekt bei eintritt der supraleitfähigkeit. Naturwissenschaften 21 (44), 787–788 (1933)

    Article  ADS  Google Scholar 

  23. Fiolhais, M.C.N., et al.: Magnetic field and current are zero inside ideal conductors. Progress In Electromagn. Res. B 27, 187–212 (2011)

    Article  Google Scholar 

  24. Hanno, N.E., Fiolhais, M.C.N.: Meissner effect, diamagnetism, and classical physics—a review. Am. J. Phys. 80(2), 164–169 (2012)

    Article  ADS  Google Scholar 

  25. Fiolhais, M.C.N., Hanno, N.E.: Electrodynamics of perfect conductors. Int. J. Theor. Phys. 52(4), 1701–1705 (2013)

    Article  MathSciNet  Google Scholar 

  26. Halperin, B.I., Lubensky, T.C., Ma, S.-k.: First-order phase transitions in superconductors and smectic-A liquid crystals. Phys. Rev. Lett. 32(5), 292 (1974)

    Article  ADS  Google Scholar 

  27. Kleinert, H.: Disorder version of the Abelian Higgs model and the order of the superconductive phase transition. Lettere al Nuovo Cimento (1971-1985) 35(13), 405–412 (1982)

    Article  Google Scholar 

  28. Kleinert, H.: Vortex origin of tricritical point in Ginzburg-Landau theory. EPL (Europhysics Letters) 74(4), 889 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  29. Gammel, P., et al.: Observation of hexagonally correlated flux quanta in YBa2cu3o7. Phys. Rev. Lett. 59 (22), 2592 (1987)

    Article  ADS  Google Scholar 

  30. Hess, H., et al.: Scanning-tunneling-microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid. Phys. Rev. Lett. 62(2), 214 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  31. Essmann, U., Träuble, H.: The direct observation of individual flux lines in type II superconductors. Phys. Lett. A 24(9), 526–527 (1967)

    Article  ADS  Google Scholar 

  32. Barba-Ortega, J., Joya, M.R., Aguiar, J.A.: Ginzburg-landau simulation of superconducting matter in a semicircular film. J. Supercond. Nov. Magn. 26(5), 2253–2255 (2013)

    Article  Google Scholar 

  33. Peng, L., et al.: Vortex configurations in a mesoscopic superconducting ring structure: a finite-element analysis. J. Supercond. Nov. Magn. 27(4), 1217–1220 (2014)

    Article  Google Scholar 

  34. Peng, L., Wei, Z., Xu, D.: Vortex states and magnetization properties in mesoscopic superconducting ring structures: a finite-element analysis. J. Supercond. Nov. Magn. 27(8), 1991–1995 (2014)

    Article  Google Scholar 

  35. Cao, R., et al.: Ginzburg—landau study of superconductor with regular pinning array. J. Supercond. Nov. Magn. 26(4), 2027–2031 (2013)

    Article  Google Scholar 

  36. Jafri, H.M., et al.: Numerical simulation of vortex dynamics in type-II superconductors in oscillating magnetic field using time-dependent Ginzburg–Landau equations. J Phys.: Condensed Matter 29(50), 505701 (2017)

    Google Scholar 

  37. Winiecki, T., Adams, C.S.: A fast semi-implicit finite-difference method for the TDGL equations. J. Comput. Phys. 179(1), 127–139 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  38. Gropp, W.D., et al.: Numerical simulation of vortex dynamics in type-II superconductors. J. Comput. Phys. 123(2), 254–266 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  39. Yan, Y., Moxley, F.I., Dai, W.: A new compact finite difference scheme for solving the complex Ginzburg–Landau equation. Appl. Math. Comput. 260, 269–287 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Li, B., Zhang, Z.: A new approach for numerical simulation of the time-dependent Ginzburg–Landau equations. J. Comput. Phys. 303, 238–250 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  41. Gao, H.: Efficient numerical solution of dynamical Ginzburg-Landau equations under the Lorentz gauge. Commun. Comput. Phys. 22(1), 182–201 (2017)

    Article  MathSciNet  Google Scholar 

  42. Chen, L.Q., Shen, J.: Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun. 108(2), 147–158 (1998)

    Article  ADS  Google Scholar 

  43. GoR’Kov, L.P., Eliashberg, G.M.: Generalization of the Ginzburg-Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities. Soviet J Exp. Theor. Phys. 27, 328 (1968)

    ADS  Google Scholar 

  44. Du, Q., Gunzburger, M.D., Peterson, J.S.: Computational simulation of type-II superconductivity including pinning phenomena. Phys. Rev. B 51(22), 16194 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation of China grant numbers 11174030 and 11504020. Author HMJ acknowledge Higher Education Commission of Pakistan for PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingqiao Ma.

Additional information

Supplementary Information

Supplementary Video S1 showing entrance of vortices into the annular sample is available as supplementary information, can be found at https://youtu.be/Z1mEor3TWi0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafri, H.M., Ma, X., Zhao, C. et al. Numerical Simulation of Phase Transitions in Type-II Annular Superconductor Using Time-dependent Ginzburg-Landau Equations. J Supercond Nov Magn 31, 3445–3451 (2018). https://doi.org/10.1007/s10948-018-4586-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4586-y

Keywords

Navigation