Skip to main content
Log in

A Microstructure-Based Mechanistic Approach to Detect Degeneration Effects on Potential Damage Zones and Morphology of Young and Old Human Intervertebral Discs

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

There is an increasing demand to develop predictive medicine through the creation of predictive models and digital twins of the different body organs. To obtain accurate predictions, real local microstructure, morphology changes and their accompanying physiological degenerative effects must be taken into account. In this article, we present a numerical model to estimate the long-term aging effect on the human intervertebral disc response by means of a microstructure-based mechanistic approach. It allows to monitor in-silico the variations in disc geometry and local mechanical fields induced by age-dependent long-term microstructure changes. Both lamellar and interlamellar zones of the disc annulus fibrosus are constitutively represented by considering the main underlying microstructure features in terms of proteoglycans network viscoelasticity, collagen network elasticity (along with content and orientation) and chemical-induced fluid transfer. With age, a noticeable increase in shear strain is especially observed in the posterior and lateral posterior regions of the annulus which is in correlation with the high vulnerability of elderly people to back problems and posterior disc hernia. Important insights about the relation between age-dependent microstructure features, disc mechanics and disc damage are revealed using the present approach. These numerical observations are hardly obtainable using current experimental technologies which makes our numerical tool useful for patient-specific long-term predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Andersson, G. B. Epidemiology of low back pain. Acta Orthop. Scand. 281:28–31, 1998.

    Article  CAS  Google Scholar 

  2. Balzani, D., P. Neff, J. Schroder, and G. A. Holzapfel. A polyconvex framework for soft biological tissues. Adjustment to experimental data. Int. J. Solids Struct. 43:6052–6070, 2006.

    Article  Google Scholar 

  3. Bergstrom, J. S., and M. C. Boyce. Constitutive modeling of the large strain time-dependent behavior of elastomers. J. Mech. Phys. Solids. 46:931–954, 1998.

    Article  CAS  Google Scholar 

  4. Breivik, H., B. Collett, V. Ventafridda, R. Cohen, and D. Gallacher. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur. J. Pain. 10:287–333, 2006.

    Article  PubMed  Google Scholar 

  5. Brickley-Parsons, D., and M. J. Glimcher. Is the chemistry of collagen in intervertebral discs an expression of Wolff’s Law? A study of the human lumbar spine. Spine. 9:148–163, 1984.

    Article  CAS  PubMed  Google Scholar 

  6. Cantournet, S., M. C. Boyce, and A. H. Tsou. Micromechanics and macromechanics of carbon nanotube-enhanced elastomers. J. Mech. Phys. Solids. 55:1321–1339, 2007.

    Article  CAS  Google Scholar 

  7. Cortes, D. H., W. M. Han, L. J. Smith, and D. M. Elliott. Mechanical properties of the extra-fibrillar matrix of human annulus fibrosus are location and age dependent. J. Orthop. Res. 31:1725–1732, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Costi, J. J., I. A. Stokes, M. Gardner-Morse, J. P. Laible, H. M. Scoffone, and J. C. Iatridis. Direct measurement of intervertebral disc maximum shear strain in six degrees of freedom: motions that place disc tissue at risk of injury. J. Biomech. 40:2457–2466, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. del Palomar, A. P., B. Calvo, and M. Doblare. An accurate finite element model of the cervical spine under quasi-static loading. J. Biomech. 41:523–531, 2008.

    Article  PubMed  Google Scholar 

  10. Derrouiche, A., F. Zaïri, and F. Zaïri. A chemo-mechanical model for osmo-inelastic effects in the annulus fibrosus. Biomech. Model. Mechanobiol. 18:1773–1790, 2019.

    Article  PubMed  Google Scholar 

  11. Derrouiche, A., A. Karoui, F. Zaïri, J. Ismail, Z. Qu, M. Chaabane, and F. Zaïri. The two Poisson’s ratios in annulus fibrosus: relation with the osmo-inelastic features. Mech. Soft Mater. 2:1, 2020.

    Article  Google Scholar 

  12. Du, Y., S. Tavana, T. Rahman, N. Baxan, U. N. Hansen, and N. Newell. Sensitivity of intervertebral disc finite element models to internal geometric and non-geometric parameters. Front. Bioeng. Biotechnol. 9:509, 2021.

    Article  Google Scholar 

  13. Ebara, S., J. C. Iatridis, L. A. Setton, R. J. Foster, V. C. Mow, and M. Weidenbaum. Tensile properties of nondegenerate human lumbar anulus fibrosus. Spine. 21:452–461, 1996.

    Article  CAS  PubMed  Google Scholar 

  14. Eberlein, R., G. Holzapfel, and M. Fröhlich. Multi-segment FEA of the human lumbar spine including the heterogeneity of the annulus fibrosus. Comput. Mech. 34:147–163, 2004.

    Article  Google Scholar 

  15. Ehlers, W., N. Karajan, and B. Markert. An extended biphasic model for charged hydrated tissues with application to the intervertebral disc. Biomech. Model. Mechanobiol. 8:233–251, 2009.

    Article  CAS  PubMed  Google Scholar 

  16. Elliott, D. M., and L. A. Setton. Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: experimental measurement and material model predictions. J. Biomech. Eng. 123:256–263, 2001.

    Article  CAS  PubMed  Google Scholar 

  17. Gent, A. N. A new constitutive relation for rubber. Rubber Chem. Technol. 69:59–61, 1996.

    Article  CAS  Google Scholar 

  18. Ghezelbash, F., A. H. Eskandari, A. Shirazi-Adl, M. Kazempour, J. Tavakoli, M. Baghani, and J. J. Costi. Modeling of human intervertebral disc annulus fibrosus with complex multi-fiber networks. Acta Biomater. 123:208–221, 2021.

    Article  CAS  PubMed  Google Scholar 

  19. Gurtin, M. E., and L. Anand. The decomposition F=FeFp, material symmetry, and plastic irrotationality for solids that are isotropic-viscoplastic or amorphous. Int. J. Plast. 21:1686–1719, 2005.

    Article  Google Scholar 

  20. Holzapfel, G. A., and T. C. Gasser. A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput. Methods Appl. Mech. Eng. 190:4379–4403, 2001.

    Article  Google Scholar 

  21. Holzapfel, G. A., C. A. J. Schulze-Bauer, G. Feigl, and P. Regitnig. Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech. Model. Mechanobiol. 3:125–140, 2005.

    Article  CAS  PubMed  Google Scholar 

  22. Iatridis, J. C., and I. ap Gwynn. Mechanisms for mechanical damage in the intervertebral disc annulus fibrosus. J. Biomech. 37:1165–1175, 2004.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Iatridis, J. C., J. J. MacLean, M. O’Brien, and I. A. Stokes. Measurements of proteoglycan and water content distribution in human lumbar intervertebral discs. Spine. 32:1493–1497, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jaramillo, H. E., L. Gomez, and J. J. Garcia. A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs. Acta Bioeng. Biomech. 17:15–24, 2015.

    PubMed  Google Scholar 

  25. Kandil, K., F. Zaïri, A. Derrouiche, T. Messager, and F. Zaïri. Interlamellar-induced time-dependent response of intervertebral disc annulus: a microstructure-based chemoviscoelastic model. Acta Biomater. 100:75–91, 2019.

    Article  CAS  PubMed  Google Scholar 

  26. Kandil, K., F. Zaïri, T. Messager, and F. Zaïri. Interlamellar matrix governs human annulus fibrosus multiaxial behavior. Sci. Rep. 10:19292, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kandil, K., F. Zaïri, T. Messager, and F. Zaïri. A microstructure-based modeling approach to assess aging-sensitive mechanics of human intervertebral disc. Comput. Methods Programs Biomed. 200:105890, 2021.

    Article  PubMed  Google Scholar 

  28. Kandil, K., F. Zaïri, T. Messager, and F. Zaïri. A microstructure-based model for a full lamellar–interlamellar displacement and shear strain mapping inside human intervertebral disc core. Comput. Biol. Med. 135:104629, 2021.

    Article  CAS  PubMed  Google Scholar 

  29. Koeller, W., F. Funke, and F. Hartmann. Biomechanical behaviour of human intervertebral discs subjected to long lasting axial loading. Biorheology. 21:675–686, 1984.

    Article  CAS  PubMed  Google Scholar 

  30. Markert, B., W. Ehlers, and N. Karajan. A general polyconvex strain energy function for fiber-reinforced materials. Proc. Appl. Math. Mech. 5:245–246, 2005.

    Article  Google Scholar 

  31. O’Connell, G. D., S. Sen, and D. M. Elliott. Human annulus fibrosus material properties from biaxial testing and constitutive modeling are altered with degeneration. Biomech. Model. Mechanobiol. 11:493–503, 2012.

    Article  PubMed  Google Scholar 

  32. Osti, O. L., B. Vernon-Roberts, R. Moore, and R. D. Fraser. Annular tears and disc degeneration in the lumbar spine: a post-mortem study of 135 discs. J. Bone Jt. Surg. 74:678–682, 1992.

    Article  CAS  Google Scholar 

  33. Parkkola, R., and M. Kormano. Lumbar disc and back muscle degeneration on MRI: correlation to age and body mass. J. Spinal Disord. 5:86–92, 1992.

    Article  CAS  PubMed  Google Scholar 

  34. Renner, S. M., R. N. Natarajan, A. G. Patwardhan, R. M. Havey, L. I. Voronov, B. Y. Guo, G. B. J. Andersson, and H. S. An. Novel model to analyze the effect of a large compressive follower pre-load on range of motions in a lumbar spine. J. Biomech. 40:1326–1332, 2007.

    Article  PubMed  Google Scholar 

  35. Rubin, D. I. Epidemiology and risk factors for spine pain. Neurol. Clin. 25:353–371, 2007.

    Article  PubMed  Google Scholar 

  36. Skaggs, D. L., M. Weidenbaum, J. C. Iatridis, A. Ratcliffe, and V. C. Mow. Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus. Spine. 19:1310–1319, 1994.

    Article  CAS  PubMed  Google Scholar 

  37. Tamoud, A., F. Zaïri, A. Mesbah, and F. Zaïri. Modeling multiaxial damage regional variation in human annulus fibrosus. Acta Biomater. 136:375–388, 2021.

    Article  CAS  PubMed  Google Scholar 

  38. Tamoud, A., F. Zaïri, A. Mesbah, and F. Zaïri. A microstructure-based model for time-dependent mechanics of multi-layered soft tissues and its application to intervertebral disc annulus. Meccanica. 56:585–606, 2021.

    Article  Google Scholar 

  39. Tamoud, A., F. Zaïri, A. Mesbah, and F. Zaïri. A multiscale and multiaxial model for anisotropic damage and failure of human annulus fibrosus. Int. J. Mech. Sci. 205:106558, 2021.

    Article  Google Scholar 

  40. Tavakoli, J., and J. J. Costi. New findings confirm the viscoelastic behaviour of the inter-lamellar matrix of the disc annulus fibrosus in radial and circumferential directions of loading. Acta Biomater. 71:411–419, 2018.

    Article  CAS  PubMed  Google Scholar 

  41. Tavakoli, J., D. M. Elliott, and J. J. Costi. Structure and mechanical function of the interlamellar matrix of the annulus fibrosus in the disc. J. Orthop. Res. 34:1307–1315, 2016.

    Article  CAS  PubMed  Google Scholar 

  42. Tavakoli, J., D. M. Elliott, and J. J. Costi. The ultra-structural organization of the elastic network in the intra- and inter-lamellar matrix of the intervertebral disc. Acta Biomater. 58:269–277, 2017.

    Article  CAS  PubMed  Google Scholar 

  43. Twomey, L., and J. Taylor. Age changes in lumbar intervertebral discs. Acta Orthop. Scand. 56:496–499, 1985.

    Article  CAS  PubMed  Google Scholar 

  44. van Loon, R., J. M. Huyghe, M. W. Wijlaars, and F. P. T. Baaijens. 3D FE implementation of an incompressible quadriphasic mixture model. Int. J. Numer. Methods Eng. 57:1243–1258, 2003.

    Article  Google Scholar 

  45. Vernon-Roberts, B., R. J. Moore, and R. D. Fraser. The natural history of age-related disc degeneration: the pathology and sequelae of tears. Spine. 32:2797–2804, 2007.

    Article  PubMed  Google Scholar 

  46. Videman, T., S. Sarna, M. C. Battie, S. Koskinen, K. Gill, H. Paananen, and L. Gibbons. The long-term effect of physical loading and exercise lifestyles on back-related symptoms, disability, and spinal pathology among men. Spine. 20:699–709, 1995.

    Article  CAS  PubMed  Google Scholar 

  47. Vo, N. V., R. A. Hartman, P. R. Patil, M. V. Risbud, D. Kletsas, J. C. Iatridis, J. A. Hoyland, C. L. Le Maitre, G. A. Sowa, and J. D. Kang. Molecular mechanisms of biological aging in intervertebral discs. J. Orthop. Res. 34:1289–1306, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang, S., W. M. Park, H. R. Gadikota, J. Miao, Y. H. Kim, K. B. Wood, and G. Li. A combined numerical and experimental technique for estimation of the forces and moments in the lumbar intervertebral disc. Comput. Methods Biomech. Biomed. Eng. 16:1278–1286, 2013.

    Article  CAS  Google Scholar 

  49. Wills, C. R., A. Malandrino, M. M. van Rijsbergen, D. Lacroix, K. Ito, and J. Noailly. Simulating the sensitivity of cell nutritive environment to composition changes within the intervertebral disc. J. Mech. Phys. Solids. 90:108–123, 2016.

    Article  Google Scholar 

  50. Wilson, W., C. C. van Donkelar, and J. M. Huyghe. A comparison between mechano-electrochemical and biphasic swelling theories for soft hydrated tissues. J. Biomech. Eng. 127:158–165, 2005.

    Article  CAS  PubMed  Google Scholar 

  51. Zhou, C., T. Cha, W. Wang, R. Guo, and G. Li. Investigation of alterations in the lumbar disc biomechanics at the adjacent segments after spinal fusion using a combined in vivo and in silico approach. Ann. Biomed. Eng. 49:601–616, 2021.

    Article  PubMed  Google Scholar 

  52. Zhu, Q., X. Gao, and W. Gu. Temporal changes of mechanical signals and extracellular composition in human intervertebral disc during degenerative progression. J. Biomech. 47:3734–3743, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhu, Q., X. Gao, C. Chen, W. Gu, and M. D. Brown. Effect of intervertebral disc degeneration on mechanical and electric signals at the interface between disc and vertebra. J. Biomech.104:109756, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahmi Zaïri.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In the continuum mechanics framework, the deformation gradient tensor \({\mathbf{F}} = {{\partial {\varvec{x}}} \mathord{\left/ {\vphantom {{\partial {\varvec{x}}} {\partial {\varvec{X}}}}} \right. \kern-0pt} {\partial {\varvec{X}}}}\) maps a material point from its initial position \({\varvec{X}}\) to the current position \({\varvec{x}}\). The time derivative is \({\dot{\mathbf{F}}} = {\mathbf{LF}}\) in which \({\mathbf{L}} = {{\partial {\varvec{v}}} \mathord{\left/ {\vphantom {{\partial {\varvec{v}}} {\partial {\varvec{x}}}}} \right. \kern-0pt} {\partial {\varvec{x}}}}\) is the spatial velocity gradient with \({\varvec{v}} = {{\partial {\varvec{x}}} \mathord{\left/ {\vphantom {{\partial {\varvec{x}}} {\partial t}}} \right. \kern-0pt} {\partial t}}\). Using the conceptual sequence of configurations, the deformation gradient tensor \({\mathbf{F}}\) can be decomposed via multiplicative forms:

$${\mathbf{F}} = {\mathbf{F}}_{{{\text{mech}}}} {\mathbf{F}}_{{{\text{chem}}}} \;{\text{and}}\;{\mathbf{F}}_{{{\text{mech}}}} = {\mathbf{F}}_{{{\text{mech}}}}^{e} {\mathbf{F}}_{{{\text{mech}}}}^{v} ,$$
(A1)

where \({\mathbf{F}}_{{{\text{mech}}}}\) is the mechanical part related to the stress-producing contribution, in turn multiplicatively decomposed into an elastic part \({\mathbf{F}}_{{{\text{mech}}}}^{e}\) and a viscous part \({\mathbf{F}}_{{{\text{mech}}}}^{v}\), and \({\mathbf{F}}_{{{\text{chem}}}} = J^{{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0pt} 3}}} {\mathbf{I}}\) is the chemical-induced part related to the volumetric expansion in which the term \({\mathbf{I}}\) is the identity tensor and \(J = \det {\mathbf{F}}_{{{\text{chem}}}} > 0\) is the Jacobian.

The spatial velocity gradient \({\mathbf{L}}\) is described by:

$${\mathbf{L}} = \underbrace {{{\dot{\mathbf{F}}}_{{{\text{mech}}}} {\mathbf{F}}_{{{\text{mech}}}}^{ - 1} }}_{{{\mathbf{L}}_{{{\text{mech}}}} }} + \underbrace {{{\mathbf{F}}_{{{\text{mech}}}} {\dot{\mathbf{F}}}_{{{\text{chem}}}} {\mathbf{F}}_{{{\text{chem}}}}^{ - 1} {\mathbf{F}}_{{{\text{mech}}}}^{ - 1} }}_{{{\mathbf{L}}_{{{\text{chem}}}} }}\;{\text{and}}\;{\mathbf{L}}_{{{\text{mech}}}} = \underbrace {{{\dot{\mathbf{F}}}_{{{\text{mech}}}}^{e} {\mathbf{F}}_{{{\text{mech}}}}^{{e^{ - 1} }} }}_{{{\mathbf{L}}_{{{\text{mech}}}}^{e} }} + \underbrace {{{\mathbf{F}}_{{{\text{mech}}}}^{e} {\dot{\mathbf{F}}}_{{{\text{mech}}}}^{v} {\mathbf{F}}_{{{\text{mech}}}}^{{v^{ - 1} }} {\mathbf{F}}_{{{\text{mech}}}}^{{e^{ - 1} }} }}_{{{\mathbf{L}}_{{{\text{mech}}}}^{v} }}$$
(A2)

in which \({\mathbf{L}}_{{{\text{mech}}}}\) is the stress-producing mechanical part, in turn decomposed into an elastic part \({\mathbf{L}}_{{{\text{mech}}}}^{e}\) and a viscous part \({\mathbf{L}}_{{{\text{mech}}}}^{v}\), and \({\mathbf{L}}_{{{\text{chem}}}}\) is the stress-free chemical-induced volumetric part.

The viscous spatial velocity gradient \({\mathbf{L}}_{{{\text{mech}}}}^{v}\) may be decomposed as the sum of symmetric and skew-symmetric parts:

$${\mathbf{L}}_{{{\text{mech}}}}^{v} = {\mathbf{F}}_{{{\text{mech}}}}^{e} {\dot{\mathbf{F}}}_{{{\text{mech}}}}^{v} {\mathbf{F}}_{{{\text{mech}}}}^{{v^{ - 1} }} {\mathbf{F}}_{{{\text{mech}}}}^{{e^{ - 1} }} = {\mathbf{D}}_{{{\text{mech}}}}^{v} + {\mathbf{W}}_{{{\text{mech}}}}^{v}$$
(A3)

in which \({\mathbf{D}}\) is the stretching rate (symmetric part) and \({\mathbf{W}}\) is the spin (skew-symmetric part):

$${\mathbf{D}} = \frac{1}{2}\left( {{\mathbf{L}} + {\mathbf{L}}^{T} } \right)\;{\text{and}}\;{\mathbf{W}} = \frac{1}{2}\left( {{\mathbf{L}} - {\mathbf{L}}^{T} } \right)$$
(A4)

It is assumed that the inelastic flow is irrotational,19 i.e. \({\mathbf{W}}_{{{\text{mech}}}}^{v} = {\mathbf{0}}\). The viscous deformation gradient \({\mathbf{F}}_{{{\text{mech}}}}^{v}\) is then extracted from:

$${\dot{\mathbf{F}}}_{{{\text{mech}}}}^{v} = {\mathbf{F}}_{{{\text{mech}}}}^{{e^{ - 1} }} {\mathbf{D}}_{{{\text{mech}}}}^{v} {\mathbf{F}}_{{{\text{mech}}}}^{e} {\mathbf{F}}_{{{\text{mech}}}}^{v}$$
(A5)

The elastic component \({\mathbf{F}}_{{{\text{mech}}}}^{e} = {\mathbf{F}}_{{{\text{mech}}}} {\mathbf{F}}_{{{\text{mech}}}}^{{v^{ - 1} }}\) is then computed.

The tensor \({\mathbf{D}}_{{{\text{mech}}}}^{v}\) defining the specificity of the model is defined by the following general flow rule:

$${\mathbf{D}}_{{{\text{mech}}}}^{v} = \dot{\gamma }_{v} {\mathbf{N}}_{v} \;{\text{with}}\;{\mathbf{N}}_{v} = \frac{{{{\varvec{\uptau}}}_{v} }}{{\left\| {{{\varvec{\uptau}}}_{v} } \right\|}}$$
(A6)

in which \(\dot{\gamma }_{{\text{v}}}\) is the accumulated viscous strain rate and \({\mathbf{N}}_{{\text{v}}}\) is the direction tensor of viscous flow aligned with the viscous Kirchhoff stress tensor \({{\varvec{\uptau}}}_{{\text{v}}}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandil, K., Zaïri, F. & Zaïri, F. A Microstructure-Based Mechanistic Approach to Detect Degeneration Effects on Potential Damage Zones and Morphology of Young and Old Human Intervertebral Discs. Ann Biomed Eng 51, 1747–1758 (2023). https://doi.org/10.1007/s10439-023-03179-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03179-0

Keywords

Navigation