Skip to main content
Log in

Cryopreservation of Whole Rat Livers by Vitrification and Nanowarming

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

A Correction to this article was published on 29 November 2022

This article has been updated

Abstract

Liver cryopreservation has the potential to enable indefinite organ banking. This study investigated vitrification—the ice-free cryopreservation of livers in a glass-like state—as a promising alternative to conventional cryopreservation, which uniformly fails due to damage from ice formation or cracking. Our unique “nanowarming” technology, which involves perfusing biospecimens with cryoprotective agents (CPAs) and silica-coated iron oxide nanoparticles (sIONPs) and then, after vitrification, exciting the nanoparticles via radiofrequency waves, enables rewarming of vitrified specimens fast enough to avoid ice formation and uniformly enough to prevent cracking from thermal stresses, thereby addressing the two main failures of conventional cryopreservation. This study demonstrates the ability to load rat livers with both CPA and sIONPs by vascular perfusion, cool them rapidly to an ice-free vitrified state, and rapidly and homogenously rewarm them. While there was some elevation of liver enzymes (Alanine Aminotransferase) and impaired indocyanine green (ICG) excretion, the nanowarmed livers were viable, maintained normal tissue architecture, had preserved vascular endothelium, and demonstrated hepatocyte and organ-level function, including production of bile and hepatocyte uptake of ICG during normothermic reperfusion. These findings suggest that cryopreservation of whole livers via vitrification and nanowarming has the potential to achieve organ banking for transplant and other biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Change history

Abbreviations

ALT:

Alanine aminotransferase

AMF:

Alternating magnetic field

CRF:

Controlled rate freezer

CPA:

Cryoprotective agent

CCR:

Critical cooling rate

CWR:

Critical warming rate

DCD:

Donation after cardiac death

ECD:

Extended criteria donors

EC:

Euro-Collins

EM:

Electromagnetic

EG:

Ethylene glycol

HU:

Hounsfield units

ICG:

Indocyanine green

LDH:

Lactate dehydrogenase

µCT:

Micro-computed tomography

RF:

Radiofrequency

sIONP:

Silica coated iron oxide nanoparticles

T g :

Glass transition temperature

T m :

Melting temperature

UW:

University of Wisconsin

References

  1. Allen, J. W., T. Hassanein, and S. N. Bhatia. Advances in bioartificial liver devices. Hepatology. 34:447–455, 2001.

    Article  CAS  PubMed  Google Scholar 

  2. Arav, A., O. Friedman, Y. Natan, E. Gur, and N. Shani. Rat hindlimb cryopreservation and transplantation: a step toward “organ banking.” Am. J. Transplant. 17:2820–2828, 2017.

    Article  CAS  PubMed  Google Scholar 

  3. Arav, A., Z. Gavish, A. Elami, Y. Natan, A. Revel, S. Silber, R. G. Gosden, and P. Patrizio. Ovarian function 6 years after cryopreservation and transplantation of whole sheep ovaries. Reprod. Biomed. Online. 20:48–52, 2010.

    Article  CAS  PubMed  Google Scholar 

  4. Bald, W. B. On crystal size and cooling rate. J. Microsc. 143:89–102, 1986.

    Article  CAS  PubMed  Google Scholar 

  5. Berendsen, T. A., B. G. Bruinsma, C. F. Puts, N. Saeidi, O. B. Usta, B. E. Uygun, M. L. Izamis, M. Toner, M. L. Yarmush, and K. Uygun. Supercooling enables long-term transplantation survival following 4 days of liver preservation. Nat. Med. 20:790–793, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bischof, J. C. Quantitative measurement and prediction of biophysical response during freezing in tissues. Annu. Rev. Biomed. Eng. 2:257–288, 2000.

    Article  CAS  PubMed  Google Scholar 

  7. Broelsch, C. E., J. C. Emond, P. F. Whitington, J. R. Thistlethwaite, A. L. Baker, and J. L. Lichtor. Application of reduced-size liver transplants as split grafts, auxiliary orthotopic grafts, and living related segmental transplants. Ann. Surg. 212:368–375, 1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ceresa, C. D. L., D. Nasralla, S. Knight, and P. J. Friend. Cold storage or normothermic perfusion for liver transplantation: probable application and indications. Curr Opin Organ Transplant. 22:300–305, 2017.

    Article  PubMed  Google Scholar 

  9. Chiu-Lam, A., E. Staples, C. J. Pepine, and C. Rinaldi. Perfusion, cryopreservation, and nanowarming of whole hearts using colloidally stable magnetic cryopreservation agent solutions. Sci. Adv. 7:10, 2021.

    Article  Google Scholar 

  10. Collins, G. M., M. Bravo-Shugarman, and P. I. Terasaki. Kidney preservation for transportation. Initial perfusion and 30 hours’ ice storage. Lancet. 2:1219–1222, 1969.

    Article  CAS  PubMed  Google Scholar 

  11. de Graaf, I. A., A. L. Draaisma, O. Schoeman, G. M. Fahy, G. M. Groothuis, and H. J. Koster. Cryopreservation of rat precision-cut liver and kidney slices by rapid freezing and vitrification. Cryobiology. 54:1–12, 2007.

    Article  PubMed  Google Scholar 

  12. de Vries, R. J., S. N. Tessier, P. D. Banik, S. Nagpal, S. E. J. Cronin, S. Ozer, E. O. A. Hafiz, T. M. van Gulik, M. L. Yarmush, J. F. Markmann, M. Toner, H. Yeh, and K. Uygun. Supercooling extends preservation time of human livers. Nat. Biotechnol. 37:1131–1136, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Elliott, G. D., S. Wang, and B. J. Fuller. Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology. 76:74–91, 2017.

    Article  CAS  PubMed  Google Scholar 

  14. Etheridge, M. L., Y. Xu, L. Rott, J. Choi, B. Glasmacher, and J. C. Bischof. RF heating of magnetic nanoparticles improves the thawing of cryopreserved biomaterials. Technology (Singap. World Sci.). 02:229–242, 2014.

    Google Scholar 

  15. Fahy, G. M., N. Guan, I. A. de Graaf, Y. Tan, L. Griffin, and G. M. Groothuis. Cryopreservation of precision-cut tissue slices. Xenobiotica. 43:113–132, 2013.

    Article  CAS  PubMed  Google Scholar 

  16. Fahy, G. M., D. R. MacFarlane, C. A. Angell, and H. T. Meryman. Vitrification as an approach to cryopreservation. Cryobiology. 21:407–426, 1984.

    Article  CAS  PubMed  Google Scholar 

  17. Fahy, G. M., B. Wowk, R. Pagotan, A. Chang, J. Phan, B. Thomson, and L. Phan. Physical and biological aspects of renal vitrification. Organogenesis. 5:167–175, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Forbes, S. J., S. Gupta, and A. Dhawan. Cell therapy for liver disease: from liver transplantation to cell factory. J. Hepatol. 62:S157-169, 2015.

    Article  CAS  PubMed  Google Scholar 

  19. Gao, Z., B. Namsrai, Z. Han, P. Joshi, J. S. Rao, V. Ravikumar, A. Sharma, H. L. Ring, D. Idiyatullin, E. C. Magnuson, P. A. Iaizzo, E. G. Tolkacheva, M. Garwood, Y. Rabin, M. Etheridge, E. B. Finger, and J. C. Bischof. Vitrification and rewarming of magnetic nanoparticle-loaded rat hearts. Adv. Mater. Technol. 7:2100873, 2022.

    Article  PubMed  Google Scholar 

  20. Gao, Z., H. L. Ring, A. Sharma, B. Namsrai, N. Tran, E. B. Finger, M. Garwood, C. L. Haynes, and J. C. Bischof. Preparation of scalable silica-coated iron oxide nanoparticles for nanowarming. Adv. Sci. (Weinh). 7:1901624, 2020.

    Article  CAS  PubMed  Google Scholar 

  21. Gavish, Z., M. Ben-Haim, and A. Arav. Cryopreservation of whole murine and porcine livers. Rejuvenation Res. 11:765–772, 2008.

    Article  PubMed  Google Scholar 

  22. Guan, N., S. A. Blomsma, P. M. van Midwoud, G. M. Fahy, G. M. Groothuis, and I. A. de Graaf. Effects of cryoprotectant addition and washout methods on the viability of precision-cut liver slices. Cryobiology. 65:179–187, 2012.

    Article  CAS  PubMed  Google Scholar 

  23. Han, Z., and J. C. Bischof. Critical cooling and warming rates as a function of CPA concentration. CryoLetters. 41:185–193, 2020.

    PubMed  Google Scholar 

  24. Han, Z., A. Sharma, Z. Gao, T. W. Carlson, M. G. O’Sullivan, E. B. Finger, and J. C. Bischof. Diffusion limited cryopreservation of tissue with radiofrequency heated metal forms. Adv. Healthc. Mater. 9:e2000796, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Iansante, V., A. Chandrashekran, and A. Dhawan. Cell-based liver therapies: past, present and future. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373:20170229, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  26. KarowJr., A. M. Cryoprotectants: a new class of drugs. J. Pharm. Pharmacol. 21:209–223, 1969.

    Article  CAS  Google Scholar 

  27. Klassen, D. K., L. B. Edwards, D. E. Stewart, A. K. Glazier, J. P. Orlowski, and C. L. Berg. The OPTN deceased donor potential study: implications for policy and practice. Am. J. Transplant. 16:1707–1714, 2016.

    Article  CAS  PubMed  Google Scholar 

  28. Kuleshova, L. L., X. W. Wang, Y. N. Wu, Y. Zhou, and H. Yu. Vitrification of encapsulated hepatocytes with reduced cooling and warming rates. Cryo Lett. 25:241–254, 2004.

    CAS  Google Scholar 

  29. Li, A. P. In vitro human hepatocyte-based experimental systems for the evaluation of human drug metabolism, drug-drug interactions, and drug toxicity in drug development. Curr. Top. Med. Chem. 14:1325–1338, 2014.

    Article  CAS  PubMed  Google Scholar 

  30. Luyet, B. J. The vitrification of organic colloids and of protoplasm. Biodynamica. 1:1–14, 1937.

    Google Scholar 

  31. MacConmara, M., S. I. Hanish, C. S. Hwang, L. De Gregorio, D. M. Desai, C. A. Feizpour, B. Tanriover, J. F. Markmann, H. Zeh 3rd., and P. A. Vagefi. Making every liver count: increased transplant yield of donor livers through normothermic machine perfusion. Ann. Surg. 272:397–401, 2020.

    Article  PubMed  Google Scholar 

  32. Magalhaes, R., X. W. Wang, S. S. Gouk, K. H. Lee, C. M. Ten, H. Yu, and L. L. Kuleshova. Vitrification successfully preserves hepatocyte spheroids. Cell Transplant. 17:813–828, 2008.

    Article  CAS  PubMed  Google Scholar 

  33. Manuchehrabadi, N., Z. Gao, J. Zhang, H. L. Ring, Q. Shao, F. Liu, M. McDermott, A. Fok, Y. Rabin, K. G. Brockbank, M. Garwood, C. L. Haynes, and J. C. Bischof. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci. Transl. Med. 9:10, 2017.

    Article  Google Scholar 

  34. Mazur, P. Freezing of living cells: mechanisms and implications. Am. J. Physiol. 247:C125-142, 1984.

    Article  CAS  PubMed  Google Scholar 

  35. McKenzie, T. J., J. B. Lillegard, and S. L. Nyberg. Artificial and bioartificial liver support. Semin. Liver Dis. 28:210–217, 2008.

    Article  PubMed  Google Scholar 

  36. Nasralla, D., C. C. Coussios, H. Mergental, M. Z. Akhtar, A. J. Butler, C. D. L. Ceresa, V. Chiocchia, S. J. Dutton, J. C. García-Valdecasas, N. Heaton, C. Imber, W. Jassem, I. Jochmans, J. Karani, S. R. Knight, P. Kocabayoglu, M. Malagò, D. Mirza, P. J. Morris, A. Pallan, A. Paul, M. Pavel, M. Perera, J. Pirenne, R. Ravikumar, L. Russell, S. Upponi, C. J. E. Watson, A. Weissenbacher, R. J. Ploeg, and P. J. Friend. A randomized trial of normothermic preservation in liver transplantation. Nature. 557:50–56, 2018.

    Article  CAS  PubMed  Google Scholar 

  37. Pegg, D. E. Principles of cryopreservation. Methods Mol. Biol. 368:39–57, 2007.

    Article  CAS  PubMed  Google Scholar 

  38. Plitz, J., Y. Rabin, and J. R. Walsh. The effect of thermal expansion of ingredients on the cocktails VS55 and DP6. Cell Preserv. Technol. 2:215–226, 2004.

    Article  CAS  Google Scholar 

  39. Revel, A., A. Elami, A. Bor, S. Yavin, Y. Natan, and A. Arav. Whole sheep ovary cryopreservation and transplantation. Fertil. Steril. 82:1714–1715, 2004.

    Article  PubMed  Google Scholar 

  40. Sharma, A., J. S. Rao, Z. Han, L. Gangwar, B. Namsrai, Z. Gao, H. L. Ring, E. Magnuson, M. Etheridge, B. Wowk, G. M. Fahy, M. Garwood, E. B. Finger, and J. C. Bischof. Vitrification and nanowarming of kidneys. Adv. Sci. (Weinh). 8:e2101691, 2021.

    Article  PubMed  Google Scholar 

  41. SRTR. Scientific Registry of Transplant Recipients National Data Report. 2021.

  42. Tessier, S. N., R. J. de Vries, C. A. Pendexter, S. E. J. Cronin, S. Ozer, E. O. A. Hafiz, S. Raigani, J. P. Oliveira-Costa, B. T. Wilks, M. Lopera Higuita, T. M. van Gulik, O. B. Usta, S. L. Stott, H. Yeh, M. L. Yarmush, K. Uygun, and M. Toner. Partial freezing of rat livers extends preservation time by 5-fold. Nat. Commun. 13:4008, 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van Rijn, R., I. J. Schurink, Y. de Vries, A. P. van den Berg, M. Cortes Cerisuelo, S. Darwish Murad, J. I. Erdmann, N. Gilbo, R. J. de Haas, N. Heaton, B. van Hoek, V. A. L. Huurman, I. Jochmans, O. B. van Leeuwen, V. E. de Meijer, D. Monbaliu, W. G. Polak, J. J. G. Slangen, R. I. Troisi, A. van lander, J. de Jonge, and R. J. Porte. Hypothermic machine perfusion in liver transplantation—a randomized trial. N. Engl. J. Med. 384:1391–1401, 2021.

    Article  PubMed  Google Scholar 

  44. Vinken, M., and J. G. Hengstler. Characterization of hepatocyte-based in vitro systems for reliable toxicity testing. Arch. Toxicol. 92:2981–2986, 2018.

    Article  CAS  PubMed  Google Scholar 

  45. Xu, H., C. Y. Lee, M. G. Clemens, and J. X. Zhang. Pronlonged hypothermic machine perfusion preserves hepatocellular function but potentiates endothelial cell dysfunction in rat livers. Transplantation. 77:1676–1682, 2004.

    Article  CAS  PubMed  Google Scholar 

  46. Zhan, L., J. S. Rao, N. Sethia, M. Q. Slama, Z. Han, D. Tobolt, M. Etheridge, Q. P. Peterson, C. S. Dutcher, J. C. Bischof, and E. B. Finger. Pancreatic islet cryopreservation by vitrification achieves high viability, function, recovery and clinical scalability for transplantation. Nat. Med. 28:798–808, 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, J., H. L. Ring, K. R. Hurley, Q. Shao, C. S. Carlson, D. Idiyatullin, N. Manuchehrabadi, P. J. Hoopes, C. L. Haynes, J. C. Bischof, and M. Garwood. Quantification and biodistribution of iron oxide nanoparticles in the primary clearance organs of mice using T1 contrast for heating. Magn. Reson. Med. 78:702–712, 2017.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by NIH (HL135046, DK117425, DK131209, DK119043, and DK126551) and NSF EEC 1941543. JSR acknowledges the support of the Schulze Diabetes Institute. We acknowledge the assistance of Dr. Mark Sanders of the University of Minnesota Imaging Center for assistance in freeze-substitution experiments.

Data Availability

The raw data required to reproduce these findings are available to download from Mendeley https://doi.org/10.17632/9nsz5chp79.1.

Conflict of interest

The authors (Sharma, Lee, Etheridge, Bischof, Finger) declare patents issued and pending related to the described methodology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik B. Finger.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3907 kb)

Supplementary file2 (MP4 2137 kb)

Supplementary file3 (MP4 1840 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Lee, C.Y., Namsrai, BE. et al. Cryopreservation of Whole Rat Livers by Vitrification and Nanowarming. Ann Biomed Eng 51, 566–577 (2023). https://doi.org/10.1007/s10439-022-03064-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-03064-2

Keywords

Navigation