Skip to main content
Log in

Controlled Comparison of Simulated Hemodynamics Across Tricuspid and Bicuspid Aortic Valves

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

This article has been updated

Abstract

Bicuspid aortic valve is the most common congenital heart defect, affecting 1–2% of the global population. Patients with bicuspid valves frequently develop dilation and aneurysms of the ascending aorta. Both hemodynamic and genetic factors are believed to contribute to dilation, yet the precise mechanism underlying this progression remains under debate. Controlled comparisons of hemodynamics in patients with different forms of bicuspid valve disease are challenging because of confounding factors, and simulations offer the opportunity for direct and systematic comparisons. Using fluid–structure interaction simulations, we simulate flows through multiple aortic valve models in a patient-specific geometry. The aortic geometry is based on a healthy patient with no known aortic or valvular disease, which allows us to isolate the hemodynamic consequences of changes to the valve alone. Four fully-passive, elastic model valves are studied: a tricuspid valve and bicuspid valves with fusion of the left- and right-, right- and non-, and non- and left-coronary cusps. The resulting tricuspid flow is relatively uniform, with little secondary or reverse flow, and little to no pressure gradient across the valve. The bicuspid cases show localized jets of forward flow, excess streamwise momentum, elevated secondary and reverse flow, and clinically significant levels of stenosis. Localized high flow rates correspond to locations of dilation observed in patients, with the location related to which valve cusps are fused. Thus, the simulations support the hypothesis that chronic exposure to high local flow contributes to localized dilation and aneurysm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Change history

  • 05 July 2022

    The original article was updated to add the missing supplemental files

References

  1. Aggarwal, A., A. M. Pouch, E. Lai, J. Lesicko, P. A. Yushkevich, J. H. Gorman III, R. C. Gorman, and M. S. Sacks. In-vivo heterogeneous functional and residual strains in human aortic valve leaflets. J. Biomech. 49(12):2481–2490, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ahrens, J., B. Geveci, and C. Law. Paraview: an end-user tool for large data visualization. Vis. Handb. 717:8, 2005.

    Google Scholar 

  3. Banko, A. J., F. Coletti, C. J. Elkins, and J. K. Eaton. Oscillatory flow in the human airways from the mouth through several bronchial generations. Int. J. Heat Fluid Flow 61:45–57, 2016.

    Article  Google Scholar 

  4. Bao, Y., A. D. Kaiser, J. Kaye, and C. S. Peskin. Gaussian-like immersed boundary kernels with three continuous derivatives and improved translational invariance. eprint, 2017. arXiv:1505.07529v3.

  5. Barker, A. J., M. Markl, J. Bürk, R. Lorenz, J. Bock, S. Bauer, J. Schulz-Menger, and F. von Knobelsdorff-Brenkenhoff. Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ. Cardiovasc. Imaging 5(4):457–466, 2012.

    Article  PubMed  Google Scholar 

  6. Bauer, M., V. Gliech, H. Siniawski, and R. Hetzer. Configuration of the ascending aorta in patients with bicuspid and tricuspid aortic valve disease undergoing aortic valve replacement with or without reduction aortoplasty. J. Heart Valve Dis. 15(5):594–600, 2006.

    PubMed  Google Scholar 

  7. Bavo, A. M., G. Rocatello, F. Iannaccone, J. Degroote, J. Vierendeels, and P. Segers. Fluid–structure interaction simulation of prosthetic aortic valves: comparison between immersed boundary and arbitrary Lagrangian–Eulerian techniques for the mesh representation. PLoS ONE 11(4):e0154517, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bertoglio, C., Caiazzo, A., Bazilevs, Y., Braack, M., Esmaily, M., Gravemeier, V., Marsden, A., Pironneau, O., Vignon-Clementel, I. E., and Wall, W. A. Benchmark problems for numerical treatment of backflow at open boundaries. Int. J. Numer. Methods Biomed. Eng. 34(2):e2918, 2018.

    Article  Google Scholar 

  9. Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—Part I: experimental results. J. Biomech. Eng. 122(1):23–30, 2000.

    Article  CAS  PubMed  Google Scholar 

  10. Cao, K., S. K. Atkins, A. McNally, J. Liu, and P. Sucosky. Simulations of morphotype-dependent hemodynamics in non-dilated bicuspid aortic valve aortas. J. Biomech. 50:63–70, 2017.

    Article  PubMed  Google Scholar 

  11. Chen, J., A. Peters, C. L. Papke, C. Villamizar, L.-J. Ringuette, J. Cao, S. Wang, S. Ma, L. Gong, K. L. Byanova, J. Xiong, M. X. Zhu, R. Madonna, P. Kee, Y.-J. Geng, A. R. Brasier, E. C. Davis, S. Prakash, C. S. Kwartler, and D. M. Milewicz. Loss of smooth muscle \(\alpha\)-actin leads to NF-\(\kappa\)b-dependent increased sensitivity to angiotensin II in smooth muscle cells and aortic enlargement. Circ. Res. 120(12):1903–1915, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cotrufo, M., and A. DellaCorte. The association of bicuspid aortic valve disease with asymmetric dilatation of the tubular ascending aorta: identification of a definite syndrome. J. Cardiovasc. Med. 10(4):291–297, 2009.

    Article  Google Scholar 

  13. De Nisco, G., P. Tasso, K. Calò, V. Mazzi, D. Gallo, F. Condemi, S. Farzaneh, S. Avril, and U. Morbiducci. Deciphering ascending thoracic aortic aneurysm hemodynamics in relation to biomechanical properties. Med. Eng. Phys. 82:119–129, 2020.

    Article  PubMed  Google Scholar 

  14. DellaCorte, A., L. S. De Santo, S. Montagnani, C. Quarto, G. Romano, C. Amarelli, M. Scardone, M. De Feo, M. Cotrufo, and G. Caianiello, Spatial patterns of matrix protein expression in dilated ascending aorta with aortic regurgitation: congenital bicuspid valve versus Marfan’s syndrome. J. Heart Valve Dis. 15(1):20–27, 2006.

    Google Scholar 

  15. DellaCorte, A., C. Quarto, C. Bancone, C. Castaldo, F. Di Meglio, D. Nurzynska, L. S. De Santo, M. De Feo, M. Scardone, S. Montagnani, and M. Cotrufo. Spatiotemporal patterns of smooth muscle cell changes in ascending aortic dilatation with bicuspid and tricuspid aortic valve stenosis: Focus on cell-matrix signaling. J. Thorac. Cardiovasc. Surg. 135(1):8–18.e2, 2008.

    Article  CAS  Google Scholar 

  16. Dux-Santoy, L., A. Guala, J. Sotelo, S. Uribe, G. Teixidó-Turà, A. Ruiz-Muñoz, D. E. Hurtado, F. Valente, L. Galian-Gay, L. Gutiérrez, T. González-Alujas, K. M. Johnson, O. Wieben, I. Ferreira-Gonzalez, A. Evangelista, and J. F. Rodríguez-Palomares. Low and oscillatory wall shear stress is not related to aortic dilation in patients with bicuspid aortic valve. Arterioscler. Thromb. Vasc. Biol. 40(1):e10–e20, 2020.

    Article  CAS  PubMed  Google Scholar 

  17. Emendi, M., F. Sturla, R. P. Ghosh, M. Bianchi, F. Piatti, F. R. Pluchinotta, D. Giese, M. Lombardi, A. Redaelli, and D. Bluestein. Patient-specific bicuspid aortic valve biomechanics: a magnetic resonance imaging integrated fluid–structure interaction approach. Ann. Biomed. Eng. 49(2):627–641, 2021.

    Article  PubMed  Google Scholar 

  18. Fedak, P. W., M. P. de Sa, S. Verma, N. Nili, P. Kazemian, J. Butany, B. H. Strauss, R. D. Weisel, and T. E. David. Vascular matrix remodeling in patients with bicuspid aortic valve malformations: implications for aortic dilatation. J. Thorac. Cardiovasc. Surg. 126(3):797–805, 2003.

    Article  PubMed  Google Scholar 

  19. Gilmanov, A., and F. Sotiropoulos. Comparative hemodynamics in an aorta with bicuspid and trileaflet valves. Theor. Comput. Fluid Dyn. 30(1–2):67–85, 2016.

    Article  CAS  Google Scholar 

  20. Girdauskas, E., M. A. Borger, M.-A. Secknus, G. Girdauskas, and T. Kuntze, Is aortopathy in bicuspid aortic valve disease a congenital defect or a result of abnormal hemodynamics? A critical reappraisal of a one-sided argument. Eur. J. Cardiothorac. Surg. 39(6):809–814, 2011.

    Article  PubMed  Google Scholar 

  21. Griffith, B. E. IBAMR: immersed boundary adaptive mesh refinement, 2017. https://github.com/IBAMR/IBAMR.

  22. Griffith, B. E., Hornung, R. D., McQueen, D. M., and Peskin, C. S. Parallel and adaptive simulation of cardiac fluid dynamics. Advanced Computational Infrastructures for Parallel and Distributed Adaptive Applications (2010), 105.

  23. Guala, A., L. Dux-Santoy, G. Teixido-Tura, A. Ruiz-Muñoz, L. Galian-Gay, M. L. Servato, F. Valente, L. Gutiérrez, T. González-Alujas, K. M. Johnson, O. Wieben, G. Casas-Masnou, A. SaoAvilés, R. Fernandez-Galera, I. Ferreira-Gonzalez, J. F. Evangelista, and J. F. Rodríguez-Palomares. Wall shear stress predicts aortic dilation in patients with bicuspid aortic valve. JACC Cardiovasc. Imaging 15(1):46–56, 2022.

    Article  PubMed  Google Scholar 

  24. Guzzardi, D. G., A. J. Barker, P. Van Ooij, S. C. Malaisrie, J. J. Puthumana, D. D. Belke, H. E. Mewhort, D. A. Svystonyuk, S. Kang, S. Verma, J. Collins, J. Carr, R. O. Bonow, M. Markl, J. D. Thomas, P. M. McCarthy, and P. W. Fedak, Valve-related hemodynamics mediate human bicuspid aortopathy: insights from wall shear stress mapping. J. Am. Coll. Cardiol. 66(8):892–900, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hammer, P. E., M. S. Sacks, J. Pedro, and R. D. Howe. Mass-spring model for simulation of heart valve tissue mechanical behavior. Ann. Biomed. Eng. 39(6):1668–1679, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Humphrey, J. D. Mechanisms of arterial remodeling in hypertension. Hypertension 52(2):195–200, 2008.

    Article  CAS  PubMed  Google Scholar 

  27. Ikonomidis, J. S., J. M. Ruddy, S. M. Benton, J. Arroyo, T. A. Brinsa, R. E. Stroud, A. Zeeshan, J. E. Bavaria, J. H. Gorman, R. C. Gorman, F. G. Spinale, and J. A. Jones. Aortic dilatation with bicuspid aortic valves: cusp fusion correlates to matrix metalloproteinases and inhibitors. Ann. Thorac. Surg. 93(2):457–463, 2012.

    Article  PubMed  Google Scholar 

  28. Jayendiran, R., F. Condemi, S. Campisi, M. Viallon, P. Croisille, and S. Avril. Computational prediction of hemodynamical and biomechanical alterations induced by aneurysm dilatation in patient-specific ascending thoracic aortas. Int. J. Numer. Methods Biomed. Eng. 36(6):e3326, 2020.

    Google Scholar 

  29. Kaiser, A. D. Modeling the mitral valve. PhD Thesis, Courant Institute of Mathematical Sciences, New York University, 2017.

  30. Kaiser, A. D., McQueen, D. M., and Peskin, C. S. Modeling the mitral valve. Int. J. Numer. Methods Biomed. Eng. 35(11):e3240, 2019.

    Google Scholar 

  31. Kaiser, A. D., N. K. Schiavone, J. K. Eaton, and A. L. Marsden Validation of immersed boundary simulations of heart valve hemodynamics against in vitro 4D Flow MRI data. Eprint, 2021. arXiv:2111.00720.

  32. Kaiser, A. D., R. Shad, W. Hiesinger, and A. L. Marsden. A design-based model of the aortic valve for fluid–structure interaction. Biomech. Model. Mechanobiol. 20(6):2413–2435, 2021.

    Article  PubMed  Google Scholar 

  33. Kim, H. J., I. E. Vignon-Clementel, C. A. Figueroa, J. F. LaDisa, K. E. Jansen, J. A. Feinstein, and C. A. Taylor. On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann. Biomed. Eng. 37(11):2153–2169, 2009.

    Article  CAS  PubMed  Google Scholar 

  34. Kimura, N., M. Nakamura, K. Komiya, S. Nishi, A. Yamaguchi, O. Tanaka, Y. Misawa, H. Adachi, and K. Kawahito. Patient-specific assessment of hemodynamics by computational fluid dynamics in patients with bicuspid aortopathy. J. Thorac. Cardiovasc. Surg. 153(4):S52–S62, 2017.

    Article  PubMed  Google Scholar 

  35. Lan, H., A. Updegrove, N. M. Wilson, G. D. Maher, S. C. Shadden, and A. L. Marsden, A re-engineered software interface and workflow for the open-source simvascular cardiovascular modeling package. J. Biomech. Eng. 140:2, 2018.

    Article  Google Scholar 

  36. Laniado, S., E. L. Yellin, C. Yoran, J. Strom, M. Hori, S. Gabbay, R. Terdiman, and R. W. M. Frater. Physiologic mechanisms in aortic insufficiency. I. The effect of changing heart rate on flow dynamics. II. Determinants of Austin flint murmur. Circulation 66(1):226–235, 1982.

    Article  CAS  PubMed  Google Scholar 

  37. Laskey, W. K., H. G. Parker, V. A. Ferrari, W. G. Kussmaul, and A. Noordergraaf. Estimation of total systemic arterial compliance in humans. J. Appl. Physiol. 69(1):112–119, 1990.

    Article  CAS  PubMed  Google Scholar 

  38. Lavon, K., R. Halevi, G. Marom, S. BenZekry, A. Hamdan, H. JoachimSchäfers, E. Raanani, and R. Haj-Ali. Fluid–structure interaction models of bicuspid aortic valves: the effects of nonfused cusp angles. J. Biomech. Eng. 140(3):031010, 2018.

    Article  Google Scholar 

  39. Losenno, K. L., Goodman, R. L., and Chu, M. W. Bicuspid aortic valve disease and ascending aortic aneurysms: gaps in knowledge. Cardiol. Res. Pract. 2012:145202, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Marom, G., H.-S. Kim, M. Rosenfeld, E. Raanani, and R. Haj-Ali. Fully coupled fluid–structure interaction model of congenital bicuspid aortic valves: effect of asymmetry on hemodynamics. Med. Biol. Eng. Comput. 51(8):839–848, 2013.

    Article  PubMed  Google Scholar 

  41. May-Newman, K., C. Lam, and F. C. Yin. A hyperelastic constitutive law for aortic valve tissue. J. Biomech. Eng. 131:8, 2009.

    Article  Google Scholar 

  42. Nishimura, R. A., C. M. Otto, R. O. Bonow, B. A. Carabello, J. P. Erwin, R. A. Guyton, P. T. O’Gara, C. E. Ruiz, N. J. Skubas, P. Sorajja, T. M. Sundt, and J. D. Thomas. 2014 AHA/ACC guideline for the management of patients with valvular heart disease. J. Am. Coll. Cardiol. 63(22):e57–e185, 2014.

    Article  PubMed  Google Scholar 

  43. Pedroza, A. J., Y. Tashima, R. Shad, P. Cheng, R. Wirka, S. Churovich, K. Nakamura, N. Yokoyama, J. Z. Cui, C. Iosef, W. Hiesinger, T. Quertermous, and M. P. Fischbein. Single-cell transcriptomic profiling of vascular smooth muscle cell phenotype modulation in Marfan syndrome aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 40(9):2195–2211, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Peskin, C. S. The immersed boundary method. Acta Numer. 11:479–517, 2002.

    Article  Google Scholar 

  45. Pham, T., F. Sulejmani, E. Shin, D. Wang, and W. Sun. Quantification and comparison of the mechanical properties of four human cardiac valves. Acta biomater. 54:345–355, 2017.

    Article  PubMed  Google Scholar 

  46. Russo, C. F., A. Cannata, M. Lanfranconi, E. Vitali, A. Garatti, and E. Bonacina. Is aortic wall degeneration related to bicuspid aortic valve anatomy in patients with valvular disease? J. Thorac. Cardiovasc. Surg. 136(4):937–942, 2008.

    Article  PubMed  Google Scholar 

  47. Sahasakul, Y., W. D. Edwards, J. M. Naessens, and A. J. Tajik. Age-related changes in aortic and mitral valve thickness: implications for two-dimensional echocardiography based on an autopsy study of 200 normal human hearts. Am. J. Cardiol. 62(7):424–430, 1988.

    Article  CAS  PubMed  Google Scholar 

  48. Schaefer, B. M., M. B. Lewin, K. K. Stout, P. H. Byers, and C. M. Otto. Usefulness of bicuspid aortic valve phenotype to predict elastic properties of the ascending aorta. Am. J. Cardiol. 99(5):686–690, 2007.

    Article  PubMed  Google Scholar 

  49. Schaefer, B. M., M. B. Lewin, K. K. Stout, E. Gill, A. Prueitt, P. H. Byers, and C. M. Otto. The bicuspid aortic valve: an integrated phenotypic classification of leaflet morphology and aortic root shape. Heart 94(12):1634–1638, 2008.

    Article  CAS  PubMed  Google Scholar 

  50. Schiavone, N. K., Elkins, C. J., McElhinney, D. B., Eaton, J. K., and Marsden, A. L. In vitro assessment of right ventricular outflow tract anatomy and valve orientation effects on bioprosthetic pulmonary valve hemodynamics. Cardiovasc. Eng. Technol. 12(2):215–231, 2021.

    Article  PubMed  Google Scholar 

  51. Stergiopulos, N., P. Segers, and N. Westerhof. Use of pulse pressure method for estimating total arterial compliance in vivo. Am. J. Physiol. Heart Circ. Physiol. 276(2):H424–H428, 1999.

    Article  CAS  Google Scholar 

  52. Sullivan, C. B., and A. Kaszynski. PyVista: 3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK). J. Open Source Softw. 4(37):1450, 2019.

    Article  Google Scholar 

  53. Valentín, A., L. Cardamone, S. Baek, and J. Humphrey. Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. J. R. Soc. Interface 6(32):293–306, 2009.

    Article  PubMed  Google Scholar 

  54. Verma, S., and S. C. Siu. Aortic dilatation in patients with bicuspid aortic valve. N. Engl. J. Med. 370(20):1920–1929, 2014.

    Article  CAS  PubMed  Google Scholar 

  55. Yap, C. H., H.-S. Kim, K. Balachandran, M. Weiler, R. Haj-Ali, and A. P. Yoganathan. Dynamic deformation characteristics of porcine aortic valve leaflet under normal and hypertensive conditions. Am. J. Physiol. Heart Circ. Physiol. 298(2):H395–H405, 2009.

    Article  PubMed  CAS  Google Scholar 

  56. Yellin, E. L. Dynamics of left ventricular filling. In: Cardiac Mechanics and Function in the Normal and Diseased Heart, edited by M. Hori, H. Suga, J. Baan, and E. L. Yellin. Tokyo: Springer, 1989, pp. 225–236.

    Chapter  Google Scholar 

  57. Youssefi, P., A. Gomez, T. He, L. Anderson, N. Bunce, R. Sharma, C. A. Figueroa, and M. Jahangiri. Patient-specific computational fluid dynamics-assessment of aortic hemodynamics in a spectrum of aortic valve pathologies. J. Thorac. Cardiovasc. Surg. 153(1):8–20, 2017.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

ADK was supported in part by a Grant from the National Heart, Lung and Blood Institute (Grant #1T32HL098049), Training Program in Mechanisms and Innovation in Vascular Disease. ADK and ALM were supported in part by the National Science Foundation SSI (Grant #1663671). ADK and NS were supported in part by American Heart Association Transformational Project Award (Grant #19TPA34910000). RS was supported in part by the American Heart Association Postdoctoral Fellowship Award (Grant #834986). NS was supported in part by the Stanford Bio-X Bowes Fellowship. Computing for this project was performed on the Stanford University’s Sherlock cluster with assistance from the Stanford Research Computing Center. Simulations were performed using the open-source solver package IBAMR, https://ibamr.github.io.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison L. Marsden.

Ethics declarations

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 10443 kb)

Supplementary file2 (MP4 11894 kb)

Supplementary file3 (MP4 12119 kb)

Supplementary file4 (MP4 12116 kb)

Appendix

Appendix

We conducted a convergence study to evaluate the sensitivity of the velocity fields, flow and pressure waveforms, and integral metrics to changes in simulation resolution. We selected the bicuspid case with left/right coronary cusp fusion for the study, as we wanted a bicuspid case to evaluate the amount of stenosis caused by geometric changes to the valve as compared with resolution. We ran otherwise identical simulations with fluid resolutions of \(\Delta x = 0.1, 0.075, 0.05\) and 0.0375 cm, where \(\Delta x = 0.05\) cm is the fluid resolution used throughout the study.

Precise convergence is difficult to achieve in these flows for a variety of numerical and physical reasons. First, the IB method effectively thickens the structure due to \(\delta\)-function based, diffuse-interface coupling. This coupling makes the effective orifice area and thus resistance to forward flow resolution-dependent. Further, the boundary conditions at the outlet are determined in a coupled manner with flow through the valve. Resistance due to the flow-averaging force is also dependent on flow rate. Additionally, the Reynolds number of such flows is in an inertial, potentially transitional, and thus physically unstable regime, which makes precise pointwise agreement in velocity fields impossible.

We see agreement, despite these limitations, between the resolutions in velocity fields, waveforms and integral metrics, as shown in Fig. 7. Qualitative trends in the velocity fields are consistent across all resolutions. The flow fields show increasing detail with resolution, as expected given the potentially transitional Reynolds number of the flow. At the coarsest resolution, the jet appears narrower when leaving the valve orifice, indicating insufficient resolution. At the finest two resolutions, the jets, regions of reverse flow and regions of recirculation are qualitatively similar.

On the two finest resolutions, \(\Delta x = 0.05\) and 0.0375 cm, the total cumulative flows are 170.7 and 173.2 mL, respectively, a relative change of 1.4%, and these simulations show sustained pressure gradients above 18 and 15 mmHg, respectively. Thus, the two finest resolutions show similar flow rates and levels of stenosis. With \(\Delta x = 0.1\) and 0.075 cm the total flow is 148.9 and 119.8 mL, respectively, and these simulations show sustained pressure gradients above 25 and 30 mmHg, respectively. We conclude that the two more coarse resolutions are under-resolved.

The integral metric curves show identical trends on the two finest resolutions. The values of \(I_{1}\), \(I_{2}\) and \(I_{\text {R}}\) are very similar at the two finest scales. At the coarsest resolution, \(\Delta x = 0.1\) cm, the values of \(I_{1}\) are elevated relative to other cases, \(I_{2}\) shows subtly different trends and elevated values, especially at slice 3, from finer resolution. We conclude that the most coarse resolution, which we do not use elsewhere, is inadequate to evaluate such metrics. For all metrics that show agreement at the finer scales, the values do not precisely agree pointwise in time because of the unsteady nature of the flow, which also causes the non-smooth appearance of the curves.

Thus, we believe that our conclusions throughout this work would be consistent with our selected resolution of \(\Delta x = 0.05\) cm or increased resolution of 0.0375 cm. We consider results with \(\Delta x = 0.05\) cm to be well-resolved and use this resolution throughout the study.

Fig. 7
figure 7

Convergence study with the bicuspid valve with LC/RC fusion and varying resolution. a Fluid velocity, vertical component and velocity normal to five selected slices. The color scheme is identical to that of Fig. 2. b Flow and pressure waveforms. c Values of integral metrics (values of \(I_{1}\) above 2.6 in the \(\Delta x = 0.1\) cm case are truncated).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaiser, A.D., Shad, R., Schiavone, N. et al. Controlled Comparison of Simulated Hemodynamics Across Tricuspid and Bicuspid Aortic Valves. Ann Biomed Eng 50, 1053–1072 (2022). https://doi.org/10.1007/s10439-022-02983-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02983-4

Keywords

Navigation