Skip to main content
Log in

In Vivo Pressurization of the Zebrafish Embryonic Heart as a Tool to Characterize Tissue Properties During Development

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cardiac morphogenesis requires an intricate orchestration of mechanical stress to sculpt the heart as it transitions from a straight tube to a multichambered adult heart. Mechanical properties are fundamental to this process, involved in a complex interplay with function, morphology, and mechanotransduction. In the current work, we propose a pressurization technique applied to the zebrafish atrium to quantify mechanical properties of the myocardium under passive tension. By further measuring deformation, we obtain a pressure-stretch relationship that is used to identify constitutive models of the zebrafish embryonic cardiac tissue. Two-dimensional results are compared with a three-dimensional finite element analysis based on reconstructed embryonic heart geometry. Through these steps, we found that the myocardium of zebrafish results in a stiffness on the order of 10 kPa immediately after the looping stage of development. This work enables the ability to determine how these properties change under normal and pathological heart development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Azeloglu, E. U., and K. D. Costa. Cross-bridge cycling gives rise to spatiotemporal heterogeneity of dynamic subcellular mechanics in cardiac myocytes probed with atomic force microscopy. Am. J. Physiol-Heart Circ. Physiol. 298:H853–H860, 2010.

    Article  CAS  PubMed  Google Scholar 

  2. Bark, D., B. Johnson, D. Garrity, and L. Dasi. Valveless pumping mechanics of the embryonic heart during cardiac looping: pressure and flow through micro-PIV. J. Biomech. 50:50–55, 2017.

    Article  PubMed  Google Scholar 

  3. Bartman, T., E. C. Walsh, K. K. Wen, M. McKane, J. H. Ren, J. Alexander, P. A. Rubenstein, and D. Y. R. Stainier. Early myocardial function affects endocardial cushion development in zebrafish. PLoS Biol. 2:673–681, 2004.

    Article  CAS  Google Scholar 

  4. Costa, K. D., A. J. Sim, and F. C. P. Yin. Non-Hertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy. J. Biomech. Eng. 128:176–184, 2005.

    Article  Google Scholar 

  5. Delfino, A., N. Stergiopulos, J. Moore, Jr, and J.-J. Meister. Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30:777–786, 1997.

    Article  CAS  PubMed  Google Scholar 

  6. Demiray, H., and R. P. Vito. A layered cylindrical shell model for an aorta. Int. J. Eng. Sci. 29:47–54, 1991.

    Article  Google Scholar 

  7. Dokos, S., B. H. Smaill, A. A. Young, and I. J. LeGrice. Shear properties of passive ventricular myocardium. Am. J. Physiol-Heart Circ. Physiol. 283:H2650–H2659, 2002.

    Article  CAS  PubMed  Google Scholar 

  8. Ebert, A., G. Hume, K. Warren, N. Cook, C. Burns, M. Mohideen, G. Siegal, D. Yelon, M. Fishman, and D. Garrity. Calcium extrusion is critical for cardiac morphogenesis and rhythm in embryonic zebrafish hearts. Proc. Natl. Acad. Sci. 102:17705–17710, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Engler, A. J., C. Carag-Krieger, C. P. Johnson, M. Raab, H.-Y. Tang, D. W. Speicher, J. W. Sanger, J. M. Sanger, and D. E. Discher. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J. Cell Sci. 121:3794–3802, 2008.

    Article  CAS  PubMed  Google Scholar 

  10. Glickman N. S., D. Yelon. Cardiac development in zebrafish: coordination of form and function. In: Seminars in Cell & Developmental Biology Elsevier, pp. 507–513, 2002.

  11. Haack, T., and S. Abdelilah-Seyfried. The force within: endocardial development, mechanotransduction and signalling during cardiac morphogenesis. Development 143:373–386, 2016.

    Article  CAS  PubMed  Google Scholar 

  12. Hamburger, V., and H. L. Hamilton. A series of normal stages in the development of the chick embryo. J. Morphol. 88:49–92, 1951.

    Article  CAS  PubMed  Google Scholar 

  13. Herrmann, C., J. Wray, F. Travers, and T. Barman. Effect of 2,3-butanedione monoxime on myosin and myofibrillar ATPases. An example of an uncompetitive inhibitor. Biochemistry 31:12227–12232, 1992.

    Article  CAS  PubMed  Google Scholar 

  14. Holzapfel, A. G. Nonlinear Solid Mechanics. New York: Wiley, 2000.

    Google Scholar 

  15. Hove, J. R., R. W. Koster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421:172–177, 2003.

    Article  CAS  PubMed  Google Scholar 

  16. Hu, N., and E. Clark. Hemodynamics of the stage 12 to stage 29 chick embryo. Circ. Res. 65:1665–1670, 1989.

    Article  CAS  PubMed  Google Scholar 

  17. Hu, N., and B. B. Keller. Relationship of simultaneous atrial and ventricular pressures in stage 16-27 chick embryos. Am. J. Physiol-Heart Circ. Physiol. 269:H1359–H1362, 1995.

    Article  CAS  Google Scholar 

  18. Hu, N., H. J. Yost, and E. B. Clark. Cardiac morphology and blood pressure in the adult zebrafish. Anatom. Record 264:1–12, 2001.

    Article  CAS  Google Scholar 

  19. Humphrey, J. D. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. New York: Springer, 2013.

    Google Scholar 

  20. Ingber, D. E., and I. Tensegrity. Cell structure and hierarchical systems biology. J. Cell Sci. 116:1157–1173, 2003.

    Article  CAS  PubMed  Google Scholar 

  21. Janmey, P. A., and C. A. McCulloch. Cell mechanics: integrating cell responses to mechanical stimuli. Annu. Rev. Biomed. Eng. 9:1–34, 2007.

    Article  CAS  PubMed  Google Scholar 

  22. Johnson, B., D. Bark, Jr, I. Van Herck, D. Garrity, and L. P. Dasi. Altered mechanical state in the embryonic heart results in time-dependent decreases in cardiac function. Biomech. Model. Mechanobiol. 521:1–11, 2015.

    Google Scholar 

  23. Kuznetsova, T. G., M. N. Starodubtseva, N. I. Yegorenkov, S. A. Chizhik, and R. I. Zhdanov. Atomic force microscopy probing of cell elasticity. Micron 38:824–833, 2007.

    Article  CAS  PubMed  Google Scholar 

  24. Lammerding, J., R. D. Kamm, and R. T. Lee. Mechanotransduction in cardiac myocytes. Ann. N. Y. Acad. Sci. 1015:53–70, 2004.

    Article  PubMed  Google Scholar 

  25. Majkut, S., T. Idema, J. Swift, C. Krieger, A. Liu, and D. E. Discher. Heart-specific stiffening in early embryos parallels matrix and myosin expression to optimize beating. Curr. Biol. 23:2434–2439, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Makarenko, I., C. Opitz, M. Leake, C. Neagoe, M. Kulke, J. Gwathmey, F. Del Monte, R. Hajjar, and W. Linke. Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts. Circ. Res. 95:708–716, 2004.

    Article  CAS  PubMed  Google Scholar 

  27. Männer, J. Cardiac looping in the chick embryo: a morphological review with special reference to terminological and biomechanical aspects of the looping process. Anatom. Record 259:248–262, 2000.

    Article  Google Scholar 

  28. McCain, M. L., and K. K. Parker. Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Pflügers Arch. Eur. J. Physiol. 462:89, 2011.

    Article  CAS  Google Scholar 

  29. Press, C. S. H. L. Danieau’s Solution (30×). New York: Cold Spring Harbor Protocols, 2011.

    Google Scholar 

  30. Samarel, A. M. Costameres, focal adhesions, and cardiomyocyte mechanotransduction. Am. J. Physioly-Heart Circ. Physiol. 289:H2291–H2301, 2005.

    Article  CAS  Google Scholar 

  31. Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9:671, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schroder, E. A., K. Tobita, J. P. Tinney, J. K. Foldes, and B. B. Keller. Microtubule involvement in the adaptation to altered mechanical load in developing chick myocardium. Circ. Res. 91:353–359, 2002.

    Article  CAS  PubMed  Google Scholar 

  33. Sedmera, D., T. Pexieder, V. Rychterova, N. Hu, and E. B. Clark. Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anatom. Record 254:238–252, 1999.

    Article  CAS  Google Scholar 

  34. Shi, Y., J. Yao, G. Xu, and L. A. Taber. Bending of the looping heart: differential growth revisited. J. Biomech. Eng. 136:081002, 2014.

    Article  Google Scholar 

  35. Stainier, D., B. M. Weinstein, H. R. Detrich, L. I. Zon, and M. C. Fishman. Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121:3141–3150, 1995.

    Article  CAS  PubMed  Google Scholar 

  36. Tobita, K., E. A. Schroder, J. P. Tinney, J. B. Garrison, and B. B. Keller. Regional passive ventricular stress-strain relations during development of altered loads in the chick embryo. Am. J. Physiol-Heart Circ. Physiol. 282:H2386–H2396, 2002.

    Article  CAS  PubMed  Google Scholar 

  37. Tracqui, P., and J. Ohayon. Transmission of mechanical stresses within the cytoskeleton of adherent cells: a theoretical analysis based on a multi-component cell model. Acta. Biotheor. 52:323–341, 2004.

    Article  PubMed  Google Scholar 

  38. Wang, T.-W., and M. Spector. Development of hyaluronic acid-based scaffolds for brain tissue engineering. Acta Biomater. 5:2371–2384, 2009.

    Article  CAS  PubMed  Google Scholar 

  39. Weinstein, B. M., D. L. Stemple, W. Driever, and M. C. Fishman. Gridlock, a localized heritable vascular patterning defect in the zebrafish. Nat. Med. 1:1143–1147, 1995.

    Article  CAS  PubMed  Google Scholar 

  40. Westerfield, M. The Zebrafish Book. Eugene, OR: University of Oregon Press, 1995.

    Google Scholar 

  41. Yao, J., V. D. Varner, L. L. Brilli, J. M. Young, L. A. Taber, and R. Perucchio. Viscoelastic material properties of the myocardium and cardiac jelly in the looping chick heart. J. Biomech. Eng. 134:024502, 2012.

    Article  PubMed  Google Scholar 

  42. Yeoh, O. H. Some forms of the strain energy function for rubber. Rubber Chem. Technol. 66:754–771, 1993.

    Article  CAS  Google Scholar 

  43. Zamir, E. A., V. Srinivasan, R. Perucchio, and L. A. Taber. Mechanical asymmetry in the embryonic chick heart during looping. Ann. Biomed. Eng. 31:1327–1336, 2003.

    Article  PubMed  Google Scholar 

  44. Zamir, E. A., and L. A. Taber. Material properties and residual stress in the stage 12 chick heart during cardiac looping. J. Biomech. Eng. 126:823–830, 2004.

    Article  PubMed  Google Scholar 

  45. Zamir, E. A., and L. A. Taber. On the effects of residual stress in microindentation tests of soft tissue structures. J. Biomech. Eng. 126:276–283, 2004.

    Article  PubMed  Google Scholar 

  46. Zhang, R.-Z., A. A. Gashev, D. C. Zawieja, and M. J. Davis. Length-tension relationships of small arteries, veins, and lymphatics from the rat mesenteric microcirculation. Am J. Physiol-Heart Circ Physiol. 292:H1943–H1952, 2007.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Steven Pagano and Mitchell Page for their help with the FEA.

Funding

This work was supported by the American Heart Association [Grant Number 17GRNT33460256].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Bark Jr..

Additional information

Associate Editor Arash Kheradvar oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 716 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gendernalik, A., Zebhi, B., Ahuja, N. et al. In Vivo Pressurization of the Zebrafish Embryonic Heart as a Tool to Characterize Tissue Properties During Development. Ann Biomed Eng 49, 834–845 (2021). https://doi.org/10.1007/s10439-020-02619-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02619-5

Keywords

Navigation