Skip to main content
Log in

Assessing Pressure–Volume Relationship in Developing Heart of Zebrafish In-Vivo

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

During embryogenesis, the developing heart transforms from a linear peristaltic tube into a multi-chambered pulsatile pump with blood flow-regulating valves. In this work, we report how hemodynamic parameters evolve during the heart’s development, leading to its rhythmic pumping and blood flow regulation as a functioning organ. We measured the time course of intra-ventricular pressure from zebrafish embryos at 3, 4, and 5 days post fertilization (dpf) using the servo null method. We also measured the ventricular volume and monitored the opening/closing activity of the AV and VB valves using 4D selective plane illumination microscopy (SPIM). Our results revealed significant increases in peak systolic pressure, stroke volume and work, cardiac output, and power generation, and a total peripheral resistance decrease from zebrafish at 4, 5 dpf versus 3 dpf. These data illustrate that the early-stage zebrafish heart’s increasing efficiency is synchronous with the expected changes in valve development, chamber morphology and increasing vascular network complexity. Such physiological measurements in tractable laboratory model organisms are critical for understanding how gene variants may affect phenotype. As the zebrafish emerges as a leading biomedical model organism, the ability to effectively measure its physiology is critical to its translational relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bagatto, B., and W. Burggren. A three-dimensional functional assessment of heart and vessel development in the larva of the Zebrafish (Danio rerio). Physiol. Biochem. Zool. 79:194–201, 2005.

    Article  Google Scholar 

  2. Burggren, W. W., B. Dubansky, and N. M. Bautista. Cardiovascular development in embryonic and larval fishes. In: Fish Physiology, edited by A. K. Gamperl, T. E. Gillis, A. P. Farrell, and C. J. Brauner. San Diego: Academic Press, 2017, pp. 107–184.

    Google Scholar 

  3. Burggren, W. W., J. F. Santin, and M. R. Antich. Cardio-respiratory development in bird embryos: new insights from a venerable animal model. Revista Brasileira de Zootecnia 45:709–728, 2016.

    Article  Google Scholar 

  4. Dhillon, S. S., E. Doro, I. Magyary, S. Egginton, A. Sik, and F. Muller. Optimisation of embryonic and larval ECG measurement in zebrafish for quantifying the effect of QT prolonging drugs. PLoS ONE 8:e60552, 2013.

    Article  CAS  PubMed Central  Google Scholar 

  5. Goenezen, S., M. Y. Rennie, and S. Rugonyi. Biomechanics of early cardiac development. Biomech. Model. Mechanobiol. 11:1187–1204, 2012.

    Article  PubMed Central  Google Scholar 

  6. Gurung, S., B. Dubansky, C. A. Virgen, G. F. Verbeck, and D. W. Murphy. Effects of crude oil vapors on the cardiovascular flow of embryonic Gulf killifish. Sci. Total Environ. 751:141627, 2021.

    Article  CAS  Google Scholar 

  7. Hou, P. C., and W. W. Burggren. Cardiac output and peripheral resistance during larval development in the anuran amphibian Xenopus laevis. Am. J. Physiol. 269:R1126–R1132, 1995.

    Article  CAS  Google Scholar 

  8. Houghton, D., T. W. Jones, S. Cassidy, M. Siervo, G. A. MacGowan, M. I. Trenell, and D. G. Jakovljevic. The effect of age on the relationship between cardiac and vascular function. Mech. Ageing Dev. 153:1–6, 2016.

    Article  PubMed Central  Google Scholar 

  9. Hu, N., and E. B. Clark. Hemodynamics of the stage 12 to stage 29 chick embryo. Circ. Res. 65:1665–1670, 1989.

    Article  CAS  Google Scholar 

  10. Hu, N., D. Sedmera, H. J. Yost, and E. B. Clark. Structure and function of the developing zebrafish heart. Anat. Rec. 260:148–157, 2000.

    Article  CAS  Google Scholar 

  11. Ishiwata, T., M. Nakazawa, W. T. Pu, S. G. Tevosian, and S. Izumo. Developmental changes in ventricular diastolic function correlate with changes in ventricular myoarchitecture in normal mouse embryos. Circ. Res.: J. Am. Heart Assoc. 93:857–865, 2003.

    Article  CAS  Google Scholar 

  12. Keller, B. B., J. P. Tinney, and N. Hu. Embryonic ventricular diastolic and systolic pressure-volume relations. Cardiol. Young 4:19–27, 1994.

    Article  Google Scholar 

  13. Kirkman, E. Mechanical events and the pressure–volume relationships. Anaesth. Intensive Care Med. 19:314–317, 2018.

    Article  Google Scholar 

  14. Kopp, R., T. Schwerte, and B. Pelster. Cardiac performance in the zebrafish breakdance mutant. J. Exp. Biol. 208:2123–2134, 2005.

    Article  Google Scholar 

  15. Lee, J., P. Fei, R. R. Sevag Packard, H. Kang, H. Xu, K. I. Baek, N. Jen, J. Chen, H. Yen, C. C. Kuo, N. C. Chi, C. M. Ho, R. Li, and T. K. Hsiai. 4-Dimensional light-sheet microscopy to elucidate shear stress modulation of cardiac trabeculation. J. Clin. Investig. 126:3158, 2016.

    Article  PubMed Central  Google Scholar 

  16. Lee, J., V. Vedula, K. I. Baek, J. Chen, J. J. Hsu, Y. Ding, C. C. Chang, H. Kang, A. Small, P. Fei, C. M. Chuong, R. Li, L. Demer, R. R. S. Packard, A. L. Marsden, and T. K. Hsiai. Spatial and temporal variations in hemodynamic forces initiate cardiac trabeculation. JCI Insight 3:e96672, 2018.

    Article  PubMed Central  Google Scholar 

  17. Li, J., Y. Cao, Y. Wu, W. Chen, Y. Yuan, X. Ma, and G. Huang. The expression profile analysis of NKX2-5 knock-out embryonic mice to explore the pathogenesis of congenital heart disease. J. Cardiol. 66:527–531, 2015.

    Article  Google Scholar 

  18. Li, Z. R., D. Ptak, L. Y. Zhang, E. K. Walls, W. X. Zhong, and Y. F. Leung. Phenylthiourea specifically reduces zebrafish eye size. PLoS ONE 7:14, 2012.

    Google Scholar 

  19. Liebling, M., A. S. Forouhar, M. Gharib, S. E. Fraser, and M. E. Dickinson. Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences. J. Biomed. Opt. 10:054001–0540010, 2005.

    Article  Google Scholar 

  20. Liebling, M., A. S. Forouhar, R. Wolleschensky, B. Zimmermann, R. Ankerhold, S. E. Fraser, M. Gharib, and M. E. Dickinson. Rapid three-dimensional imaging and analysis of the beating embryonic heart reveals functional changes during development. Dev. Dyn. 235:2940–2948, 2006.

    Article  Google Scholar 

  21. Messerschmidt, V., Z. Bailey, K. I. Baek, R. Bryant, R. Li, T. K. Hsiai, and J. Lee. Light-sheet fluorescence microscopy to capture 4-dimensional images of the effects of modulating shear stress on the developing zebrafish heart. J. Vis. Exp.: JoVE 138:e57763, 2018.

    Google Scholar 

  22. Moriyama, Y., F. Ito, H. Takeda, T. Yano, M. Okabe, S. Kuraku, F. W. Keeley, and K. Koshiba-Takeuchi. Evolution of the fish heart by sub/neofunctionalization of an elastin gene. Nat. Commun. 7:10397, 2016.

    Article  CAS  PubMed Central  Google Scholar 

  23. Perrichon, P., M. Grosell, and W. W. Burggren. Heart performance determination by visualization in larval fishes: influence of alternative models for heart shape and volume. Front. Physiol. 8:464, 2017.

    Article  PubMed Central  Google Scholar 

  24. Rombough, P. The functional ontogeny of the teleost gill: Which comes first, gas or ion exchange? Comp. Biochem. Physiol. A Mol. Integr. Physiol 148:732–742, 2007.

    Article  Google Scholar 

  25. Salman, H. E., B. Ramazanli, M. M. Yavuz, and H. C. Yalcin. Biomechanical investigation of disturbed hemodynamics-induced tissue degeneration in abdominal aortic aneurysms using computational and experimental techniques. Front. Bioeng. Biotechnol. 7:111, 2019.

    Article  PubMed Central  Google Scholar 

  26. Scherz, P. J., J. Huisken, P. Sahai-Hernandez, and D. Y. Stainier. High-speed imaging of developing heart valves reveals interplay of morphogenesis and function. Development 135:1179–1187, 2008.

    Article  CAS  Google Scholar 

  27. Shin, J. T., E. V. Pomerantsev, J. D. Mably, and C. A. MacRae. High-resolution cardiovascular function confirms functional orthology of myocardial contractility pathways in zebrafish. Physiol. Genom. 42:300–309, 2010.

    Article  CAS  Google Scholar 

  28. Steed, E., F. Boselli, and J. Vermot. Hemodynamics driven cardiac valve morphogenesis. Biochim. Biophys. Acta 1863:1760–1766, 2016.

    Article  CAS  Google Scholar 

  29. Stekelenburg-de Vos, S., P. Steendijk, N. T. C. Ursem, J. W. Wladimiroff, R. Delfos, and R. E. Poelmann. Systolic and diastolic ventricular function assessed by pressure-volume loops in the stage 21 venous clipped chick embryo. Pediatric Res. 57:16–21, 2005.

    Article  Google Scholar 

  30. Stekelenburg-de Vos, S., P. Steendijk, N. T. Ursem, J. W. Wladimiroff, and R. E. Poelmann. Systolic and diastolic ventricular function in the normal and extra-embryonic venous clipped chicken embryo of stage 24: a pressure-volume loop assessment. Ultrasound Obstet. Gynecol. 30:325–331, 2007.

    Article  CAS  Google Scholar 

  31. Taber, L. A., and R. Perucchio. Modeling heart development. J. Elast. 61:165–197, 2000.

    Article  Google Scholar 

  32. Vermot, J., A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser. Reversing blood flows act through klf2a to ensure normal valvulogenesis in the developing heart. PLoS Biol. 7:e1000246, 2009.

    Article  PubMed Central  Google Scholar 

  33. Walley, K. R. Left ventricular function: time-varying elastance and left ventricular aortic coupling. Crit. Care 20:270, 2016.

    Article  PubMed Central  Google Scholar 

  34. Wang, L. W., I. G. Huttner, C. F. Santiago, S. H. Kesteven, Z.-Y. Yu, M. P. Feneley, and D. Fatkin. Standardized echocardiographic assessment of cardiac function in normal adult zebrafish and heart disease models. Dis. Models Mech. 10:63–76, 2017.

    CAS  Google Scholar 

  35. Wang, W. D., Y. Wang, H. J. Wen, D. R. Buhler, and C. H. Hu. Phenylthiourea as a weak activator of aryl hydrocarbon receptor inhibiting 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced CYP1A1 transcription in zebrafish embryo. Biochem. Pharmacol. 68:63–71, 2004.

    Article  CAS  Google Scholar 

  36. Weber, M., and J. Huisken. In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy. Swiss Med. Wkly 145:w14227, 2015.

    PubMed  Google Scholar 

  37. Westerfield, M. The zebrafish book : a guide for the laboratory use of zebrafish (Brachydanio rerio). Eugene, OR: M. Westerfield, 1993.

    Google Scholar 

  38. Yalcin, H. C., A. Amindari, J. T. Butcher, A. Althani, and M. Yacoub. Heart function and hemodynamic analysis for zebrafish embryos. Dev. Dyn. 246:868–880, 2017.

    Article  Google Scholar 

  39. Zakaria, Z. Z., F. M. Benslimane, G. K. Nasrallah, S. Shurbaji, N. N. Younes, F. Mraiche, S. I. Da’as, and H. C. Yalcin. Using zebrafish for investigating the molecular mechanisms of drug-induced cardiotoxicity. Biomed. Res. Int. 2018. https://doi.org/10.1155/2018/1642684.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the supports from the AHA Grant #18CDA34110150 (to JL), NSF Grant #1936519 (to JL) and the University of Texas Arlington.

Competing interests

All authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Jen Chuong.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 398 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehin, N., Villarreal, C., Teranikar, T. et al. Assessing Pressure–Volume Relationship in Developing Heart of Zebrafish In-Vivo. Ann Biomed Eng 49, 2080–2093 (2021). https://doi.org/10.1007/s10439-021-02731-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-021-02731-0

Keywords

Navigation