Skip to main content
Log in

Prediction of Knee Kinematics at the Time of Noncontact Anterior Cruciate Ligament Injuries Based on the Bone Bruises

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Biomechanical risk factors associated with the alignment and position of the knee for anterior cruciate ligament (ACL) injury are still not conclusive. As bone bruises identified on magnetic resonance imaging (MRI) following acute ACL injury could represent the impact footprint at the time of injury. To improve understanding of the ACL injury mechanism, we aimed to determine the knee kinematics during ACL injury based on the bone bruises. Knee MRI scans of patients who underwent acute noncontact ACL injuries were acquired. Numerical optimization was used to match the bone bruises of the femur and tibia and predict the knee positions during injury. Knee angles were compared between MRI measured position and predicted position. The knee flexion, abduction, and external tibial rotation angles were significantly greater in the predicted position than that in MRI measured position. Relative to MRI measured position, patients had a mean of 34.3 mm of anterior tibial translation, 4.0 mm of lateral tibial translation, and 16.0 mm superior tibial translation in the predicted position. The results suggest that knee valgus and external tibial rotation accompanied by knee flexion are high-risk movement pattern for ACL injury in patients with lateral compartment bone bruising in conjunction with ACL injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Arms, S. W., M. H. Pope, R. J. Johnson, R. A. Fischer, I. Arvidsson, and E. Eriksson. The biomechanics of anterior cruciate ligament rehabilitation and reconstruction. Am. J. Sports Med. 12:8–18, 1984.

    CAS  PubMed  Google Scholar 

  2. Bates, N. A., N. D. Schilaty, C. V. Nagelli, A. J. Krych, and T. E. Hewett. Validation of noncontact anterior cruciate ligament tears produced by a mechanical impact simulator against the clinical presentation of injury. Am. J. Sports Med. 46:2113–2121, 2018.

    PubMed  PubMed Central  Google Scholar 

  3. Berns, G. S., M. L. Hull, and H. A. Patterson. Strain in the anteromedial bundle of the anterior cruciate ligament under combination loading. J. Orthop. Res. 10:167–176, 1992.

    CAS  PubMed  Google Scholar 

  4. Boden, B. P., G. S. Dean, J. A. Feagin, and W. E. Garrett. Mechanisms of anterior cruciate ligament injury. Orthopedics. 23:573–578, 2000.

    CAS  PubMed  Google Scholar 

  5. Boden, B. P., J. S. Torg, S. B. Knowles, and T. E. Hewett. Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. Am. J. Sports Med. 37:252–259, 2009.

    PubMed  Google Scholar 

  6. Brophy, R. H., R. W. Wright, and M. J. Matava. Cost analysis of converting from single-bundle to double-bundle anterior cruciate ligament reconstruction. Am. J. Sports Med. 37:683–687, 2009.

    PubMed  Google Scholar 

  7. Dai, B., D. Mao, W. E. Garrett, and B. Yu. Anterior cruciate ligament injuries in soccer: loading mechanisms, risk factors, and prevention programs. J. Sport. Health. Sci. 3:299–306, 2014.

    Google Scholar 

  8. Dai, B., M. Mao, W. E. Garrett, and B. Yu. Biomechanical characteristics of an anterior cruciate ligament injury in javelin throwing. J. Sport. Health. Sci. 4:333–340, 2015.

    Google Scholar 

  9. Defrate, L. E., R. Papannagari, T. J. Gill, J. M. Moses, N. P. Pathare, and G. Li. The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am. J. Sports Med. 34:1240–1246, 2006.

    PubMed  Google Scholar 

  10. DiStasi, S. L., and L. Snyder-Mackler. The effects of neuromuscular training on the gait patterns of ACL-deficient men and women. Clin. Biomech. (Bristol, Avon) 27:360–365, 2012.

    Google Scholar 

  11. Eberle, R., D. Heinrich, A. van den Bogert, M. Oberguggenberger, and W. Nachbauer. An approach to generate noncontact ACL-injury prone situations on a computer using kinematic data of non-injury situations and Monte Carlo simulation. Comput. Methods Biomech. Biomed. Eng. 22:3–10, 2019.

    CAS  Google Scholar 

  12. Fleming, B. C., P. A. Renstrom, B. D. Beynnon, B. Engstrom, G. D. Peura, G. J. Badger, and R. J. Johnson. The effect of weightbearing and external loading on anterior cruciate ligament strain. J. Biomech. 34:163–170, 2001.

    CAS  PubMed  Google Scholar 

  13. Fullerton, G. D. Magnetic resonance imaging signal concepts. RadioGraphics. 7:579–596, 1987.

    CAS  PubMed  Google Scholar 

  14. Granan, L.-P., M. C. S. Inacio, G. B. Maletis, T. T. Funahashi, and L. Engebretsen. Sport-specific injury pattern recorded during anterior cruciate ligament reconstruction. Am. J. Sports Med. 41:2814–2818, 2013.

    PubMed  Google Scholar 

  15. Hewett, T. E., G. D. Myer, K. R. Ford, R. S. Heidt, Jr, A. J. Colosimo, S. G. McLean, A. J. van den Bogert, M. V. Paterno, and P. Succop. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am. J. Sports Med. 33:492–501, 2005.

    PubMed  Google Scholar 

  16. Hewett, T. E., A. L. Stroupe, T. A. Nance, and F. R. Noyes. Plyometric training in female athletes: decreased impact forces and increased hamstring torques. Am. J. Sports Med. 24:765–773, 1996.

    CAS  PubMed  Google Scholar 

  17. Hewett, T. E., J. S. Torg, and B. P. Boden. Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. Br. J. Sports Med. 43:417–422, 2009.

    CAS  PubMed  Google Scholar 

  18. Johnston, J. T., B. R. Mandelbaum, D. Schub, S. A. Rodeo, M. J. Matava, H. J. Silvers-Granelli, B. J. Cole, N. S. ElAttrache, T. R. McAdams, and R. H. Brophy. Video analysis of anterior cruciate ligament tears in Professional American football athletes. Am. J. Sports Med. 46:862–868, 2018.

    PubMed  Google Scholar 

  19. Kärrholm, J., G. Selvik, L. G. Elmqvist, and L. I. Hansson. Active knee motion after cruciate ligament rupture. Stereoradiography. Acta Orthop. Scand. 59:158–164, 1988.

    PubMed  Google Scholar 

  20. Kiapour, A. M., C. K. Demetropoulos, A. Kiapour, C. E. Quatman, S. C. Wordeman, V. K. Goel, and T. E. Hewett. Strain response of the anterior cruciate ligament to uniplanar and multiplanar loads during simulated landings: implications for injury mechanism. Am. J. Sports Med. 44:2087–2096, 2016.

    PubMed  Google Scholar 

  21. Kim, S. Y., C. E. Spritzer, G. M. Utturkar, A. P. Toth, W. E. Garrett, and L. E. DeFrate. Knee kinematics during noncontact anterior cruciate ligament injury as determined from bone bruise location. Am. J. Sports Med. 43:2515–2521, 2015.

    PubMed  PubMed Central  Google Scholar 

  22. Koga, H., A. Nakamae, Y. Shima, J. Iwasa, G. Myklebust, L. Engebretsen, R. Bahr, and T. Krosshaug. Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball. Am. J. Sports Med. 38:2218–2225, 2010.

    PubMed  Google Scholar 

  23. Kostogiannis, I., E. Ageberg, P. Neuman, L. Dahlberg, T. Friden, and H. Roos. Activity level and subjective knee function 15 years after anterior cruciate ligament injury: a prospective, longitudinal study of nonreconstructed patients. Am. J. Sports Med. 35:1135–1143, 2007.

    PubMed  Google Scholar 

  24. Krosshaug, T., A. Nakamae, B. P. Boden, L. Engebretsen, G. Smith, J. R. Slauterbeck, T. E. Hewett, and R. Bahr. Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am. J. Sports Med. 35:359–367, 2007.

    PubMed  Google Scholar 

  25. Liu, H., W. Wu, W. Yao, J. T. Spang, R. A. Creighton, W. E. Garrett, and B. Yu. Effects of knee extension constraint training on knee flexion angle and peak impact ground-reaction force. Am. J. Sports Med. 42:979–986, 2014.

    PubMed  Google Scholar 

  26. Markolf, K. L., D. M. Burchfield, M. M. Shapiro, M. F. Shepard, G. A. Finerman, and J. L. Slauterbeck. Combined knee loading states that generate high anterior cruciate ligament forces. J. Orthop. Res. 13:930–935, 1995.

    CAS  PubMed  Google Scholar 

  27. McLean, S. G., X. Huang, A. Su, and A. J. Van Den Bogert. Sagittal plane biomechanics cannot injure the ACL during sidestep cutting. Clin. Biomech. (Bristol, Avon.) 19:828–838, 2004.

    Google Scholar 

  28. Meyer, E. G., and R. C. Haut. Excessive compression of the human tibio-femoral joint causes ACL rupture. J. Biomech. 38:2311–2316, 2005.

    PubMed  Google Scholar 

  29. Mink, J. H., and A. L. Deutsch. Occult cartilage and bone injuries of the knee: detection, classification, and assessment with MR imaging. Radiology 170:823–829, 1989.

    CAS  PubMed  Google Scholar 

  30. Myer, G. D., K. R. Ford, J. Khoury, P. Succop, and T. E. Hewett. Biomechanics laboratory-based prediction algorithm to identify female athletes with high knee loads that increase risk of ACL injury. Br. J. Sports Med. 45:245–252, 2011.

    PubMed  Google Scholar 

  31. Novaretti, J. V., J. J. Shin, M. Albers, M. C. Chambers, M. Cohen, V. Musahl, and F. H. Fu. Bone bruise patterns in skeletally immature patients with anterior cruciate ligament injury: shock-absorbing function of the physics. Am. J. Sports Med. 46:2128–2132, 2018.

    PubMed  Google Scholar 

  32. Olsen, O.-E., G. Myklebust, L. Engebretsen, and R. Bahr. Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am. J. Sports Med. 32:1002–1012, 2004.

    PubMed  Google Scholar 

  33. Owusu-Akyaw, K. A., S. Y. Kim, C. E. Spritzer, A. T. Collins, Z. A. Englander, G. M. Utturkar, W. E. Garrett, and L. E. DeFrate. Determination of the position of the knee at the time of an anterior cruciate ligament rupture for male versus female patients by an analysis of bone bruises: response. Am. J. Sports Med. 46:Np48–np51, 2018.

    PubMed  Google Scholar 

  34. Prodromos, C. C., Y. Han, J. Rogowski, B. Joyce, and K. Shi. A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen. Arthroscopy 23:1320–1325.e1326, 2007.

    PubMed  Google Scholar 

  35. Quatman, C. E., and T. E. Hewett. The anterior cruciate ligament injury controversy: is “valgus collapse” a sex-specific mechanism? Br. J. Sports Med. 43:328–335, 2009.

    CAS  PubMed  Google Scholar 

  36. Sanders, T. G., M. A. Medynski, J. F. Feller, and K. W. Lawhorn. Bone contusion patterns of the knee at MR imaging: footprint of the mechanism of injury. Radiographics. 20:S135–S151, 2000.

    PubMed  Google Scholar 

  37. Shoemaker, S. C., D. Adams, D. M. Daniel, and S. L. Woo. Quadriceps/anterior cruciate graft interaction. An in vitro study of joint kinematics and anterior cruciate ligament graft tension. Clin. Orthop. Relat. Res. 294:379–390, 1993.

    Google Scholar 

  38. Speer, K. P., R. F. Warren, T. L. Wickiewicz, L. Horowitz, and L. Henderson. Observations on the injury mechanism of anterior cruciate ligament tears in skiers. Am. J. Sports Med. 23:77–81, 1995.

    CAS  PubMed  Google Scholar 

  39. Spindler, K. P., J. P. Schils, J. A. Bergfeld, J. T. Andrish, G. G. Weiker, T. E. Anderson, D. W. Piraino, B. J. Richmond, and S. V. Medendorp. Prospective study of osseous, articular, and meniscal lesions in recent anterior cruciate ligament tears by magnetic resonance imaging and arthroscopy. Am. J. Sports Med. 21:551–557, 1993.

    CAS  PubMed  Google Scholar 

  40. Uvehammer, J. Knee joint kinematics, fixation and function related to joint area design in total knee arthroplasty. Acta Orthop. Scand. Suppl. 72:1–52, 2001.

    CAS  PubMed  Google Scholar 

  41. Viskontas, D. G., B. M. Giuffre, N. Duggal, D. Graham, D. Parker, and M. Coolican. Bone bruises associated with ACL rupture: correlation with injury mechanism. Am. J. Sports Med. 36:927–933, 2008.

    PubMed  Google Scholar 

  42. von Porat, A., E. M. Roos, and H. Roos. High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann. Rheum. Dis. 63:269–273, 2004.

    Google Scholar 

  43. Waldén, M., T. Krosshaug, J. Bjørneboe, T. E. Andersen, O. Faul, and M. Hägglund. Three distinct mechanisms predominate in non-contact anterior cruciate ligament injuries in male professional football players: a systematic video analysis of 39 cases. Br. J. Sports Med. 49:1452–1460, 2015.

    PubMed  Google Scholar 

  44. Wittstein, J., E. Vinson, and W. Garrett. Comparison between sexes of bone contusions and meniscal tear patterns in noncontact anterior cruciate ligament injuries. Am. J. Sports Med. 42:1401–1407, 2014.

    PubMed  Google Scholar 

  45. Yang, C., W. Yao, W. E. Garrett, D. L. Givens, J. Hacke, H. Liu, and B. Yu. Effects of an intervention program on lower extremity biomechanics in stop-jump and side-cutting tasks. Am. J. Sports Med. 46:3014–3022, 2018.

    PubMed  Google Scholar 

  46. Zhang, L., J. D. Hacke, W. E. Garrett, H. Liu, and B. Yu. Bone bruises associated with anterior cruciate ligament injury as indicators of injury mechanism: a systematic review. Sports Med. 49:453–462, 2019.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (Grant Number 81330040) and the Beijing Natural Science Foundation (Grant Number 7202232).

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongshi Huang or Yingfang Ao.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Ding, L., Ren, S. et al. Prediction of Knee Kinematics at the Time of Noncontact Anterior Cruciate Ligament Injuries Based on the Bone Bruises. Ann Biomed Eng 49, 162–170 (2021). https://doi.org/10.1007/s10439-020-02523-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02523-y

Keywords

Navigation