Skip to main content
Log in

A Three-Dimensional Statistical Volume Element for Histology Informed Micromechanical Modeling of Brain White Matter

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study presents a novel statistical volume element (SVE) for micromechanical modeling of the white matter structures, with histology-informed randomized distribution of axonal tracts within the extracellular matrix. The model was constructed based on the probability distribution functions obtained from the results of diffusion tensor imaging as well as the histological observations of scanning electron micrograph, at two structures of white matter susceptible to traumatic brain injury, i.e. corpus callosum and corona radiata. A simplistic representative volume element (RVE) with symmetrical arrangement of fully alligned axonal fibers was also created as a reference for comparison. A parametric study was conducted to find the optimum grid and edge size which ensured the periodicity and ergodicity of the SVE and RVE models. A multi-objective evolutionary optimization procedure was used to find the hyperelastic and viscoelastic material constants of the constituents, based on the experimentally reported responses of corpus callosum to axonal and transverse loadings. The optimal material properties were then used to predict the homogenized and localized responses of corpus callosum and corona radiata. The results indicated similar homogenized responses of the SVE and RVE under quasi-static extension, which were in good agreement with the experimental data. Under shear strain, however, the models exhibited different behaviors, with the SVE model showing much closer response to the experimental observations. Moreover, the SVE model displayed a significantly better agreement with the reports of the experiments at high strain rates. The results suggest that the randomized fiber architecture has a great influence on the validity of the micromechanical models of white matter, with a distinguished impact on the model’s response to shear deformation and high strain rates. Moreover, it can provide a more detailed presentation of the localized responses of the tissue substructures, including the stress concentrations around the low caliber axonal tracts, which is critical for studying the axonal injury mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Abolfathi, N., A. Naik, M. Sotudeh Chafi, G. Karami, and M. Ziejewski. A micromechanical procedure for modelling the anisotropic mechanical properties of brain white matter. Comput. Methods Biomech. Biomed. Eng. 12(3):249–262, 2009.

    Article  CAS  Google Scholar 

  2. Arbogast, K. B., and S. Margulies. Regional differences in mechanical properties of the porcine central nervous system. SAE Trans. 106:3807–3814, 1997.

    Google Scholar 

  3. Atashpaz-Gargari, E., and C. Lucas. Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE Congress on Evolutionary Computation, 2007, pp. 4661–4666.

  4. Barazany, D., P. J. Basser, and Y. Assaf. In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain 132:1210–1220, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Budday, S., G. Sommer, C. Birkl, C. Langkammer, J. Haybaeck, J. Kohnert, M. Bauer, F. Paulsen, P. Steinmann, E. Kuhl, and G. A. Holzapfel. Mechanical characterization of human brain tissue. Acta Biomater. 48:319–340, 2017.

    Article  CAS  PubMed  Google Scholar 

  6. Budday, S., G. Sommer, J. Haybaeck, P. Steinmann, G. A. Holzapfel, and E. Kuhl. Rheological characterization of human brain tissue. Acta Biomater. 60:315–329, 2017.

    Article  CAS  PubMed  Google Scholar 

  7. Chafi, M. S., G. Karami, and M. Ziejewski. Biomechanical assessment of brain dynamic responses due to blast pressure waves. Ann. Biomed. Eng. 38(2):490–504, 2010.

    Article  CAS  PubMed  Google Scholar 

  8. Cloots, R. J. H., J. A. W. van Dommelen, S. Kleiven, and M. G. D. Geers. Multi-scale mechanics of traumatic brain injury: predicting axonal strains from head loads. Biomech. Model. Mechanobiol. 12:137–150, 2011.

    Article  Google Scholar 

  9. Costa, A. R., R. Pinto-Costa, S. C. Sousa, and M. M. Sousa. The regulation of axon diameter: from axonal circumferential contractility to activity-dependent axon swelling. Front. Mol. Neurosci. 11:319, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De Rooij, R., and E. Kuhl. Constitutive modeling of brain tissue: current perspectives. Appl. Mech. Rev. 68(1):010801, 2016.

    Article  Google Scholar 

  11. Di Pietro, V. Potentially neuroprotective gene modulation in an in vitro model of mild traumatic brain injury. Mol. Cell Biochem. 375:185–198, 2013.

    Article  CAS  PubMed  Google Scholar 

  12. Gupta, R., X. Tan, M. Somayaji, and A. Przekwas. Multiscale modelling of blast-induced TBI mechanobiology—from body to neuron to molecule. Def. Life Sci. J. 2(1):3–13, 2017.

    Article  Google Scholar 

  13. Hakulinen, U., A. Brander, P. Ryymin, J. Öhman, S. Soimakallio, M. Helminen, and H. Eskola. Repeatability and variation of region-of-interest methods using quantitative diffusion tensor MR imaging of the brain. BMC Med. Imaging 12:30, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hill, R. Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11(5):357–372, 1963.

    Article  Google Scholar 

  15. Hollister, S. J., and N. Kikuchi. A comparison of homogenization and standard mechanics analyses for periodic porous composites. Comput. Mech. 10(2):73–95, 1992.

    Article  Google Scholar 

  16. Holzapfel, G. A., and R. W. Ogden. On the tension–compression switch in soft fibrous solids. Eur. J. Mech. A/Solids 49:561–569, 2015.

    Article  Google Scholar 

  17. Hoursan, H., F. Farahmand, and M. Ahmadian. A novel procedure for micromechanical characterization of white matter constituents at various strain rates. Sci. Iran. 2018. https://doi.org/10.24200/sci.2018.50940.1928.

    Article  Google Scholar 

  18. Javid, S., A. Rezaei, and G. Karami. A micromechanical procedure for viscoelastic characterization of the axons and ECM of the brainstem. J. Mech. Behav. Biomed. Mater. 30:290–299, 2014.

    Article  PubMed  Google Scholar 

  19. Johnson, C. L., M. D. J. McGarry, A. A. Gharibans, J. B. Weaver, K. D. Paulsen, H. Wang, W. C. Olivero, B. P. Sutton, and J. G. Georgiadis. Local mechanical properties of white matter structures in the human brain. Neuroimage 79:145–152, 2013.

    Article  PubMed  Google Scholar 

  20. Karami, G., N. Grundman, N. Abolfathi, A. Naik, and M. Ziejewski. A micromechanical hyperelastic modeling of brain white matter under large deformation. J. Mech. Behav. Biomed. Mater. 2(3):243–254, 2009.

    Article  CAS  PubMed  Google Scholar 

  21. Kouznetsova, V. Computational Homogenization for the Multi-scale Analysis of Multi-phase Materials. Eindhoven: Technische Universiteit Eindhoven, 2002.

    Google Scholar 

  22. Labus, K. M., and C. M. Puttlitz. An anisotropic hyperelastic constitutive model of brain white matter in biaxial tension and structural–mechanical relationships. J. Mech. Behav. Biomed. Mater. 62:195–208, 2016.

    Article  PubMed  Google Scholar 

  23. Latorre, M., E. De Rosa, and F. Montáns. Understanding the need of the compression branch to characterize hyperelastic materials. Int. J. Nonlinear Mech. 89:14–24, 2017.

    Article  Google Scholar 

  24. Leemans, A., B. Jeurissen, J. Sijbers, and D. K. Jones. Explore DTI: A graphical toolbox for processing, analyzing, and visualizing diffusion MR data. In: 17th Annual Meeting of International Society of Magnetic Resonance in Medicine, Hawaii, USA, 2009, p. 3537.

  25. Libertiaux, V., F. Pascon, and S. Cescotto. Experimental verification of brain tissue incompressibility using digital image correlation. J. Mech. Behav. Biomed. Mater. 4(7):1177–1185, 2011.

    Article  CAS  PubMed  Google Scholar 

  26. MacManus, D. B., B. Pierrat, J. G. Murphy, and M. D. Gilchrist. Region and species dependent mechanical properties of adolescent and young adult brain tissue. Sci. Rep. 7(1):13729, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mazziotta, J., A. Toga, A. Evans, P. Fox, J. Lancaster, K. Zilles, et al. A probabilistic atlas and reference system for the human brain. International Consortium for Brain Mapping (ICBM). Philos. Trans. R Soc. Lond. B Biol. Sci. 356(1412):1293–1322, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McAllister, T. W., J. C. Ford, S. Ji, et al. Maximum principal strain and strain rate associated with concussion diagnosis correlates with changes in corpus callosum white matter indices. Ann. Biomed. Eng. 40:127, 2012.

    Article  PubMed  Google Scholar 

  29. Meaney, D. F. Relationship between structural modeling and hyperelastic material behavior: application to CNS white matter. Biomech. Model. Mechanobiol. 1:279–293, 2003.

    Article  CAS  PubMed  Google Scholar 

  30. Moerman, K. M., C. K. Simms, and T. Nagel. Control of tension-compression asymmetry in Ogden hyperelasticity with application to soft tissue modelling. J. Mech. Behav. Biomed. Mater. 56:218–228, 2016.

    Article  CAS  PubMed  Google Scholar 

  31. Ning, X., Q. Zhu, Y. Lanir, and S. S. Margulies. A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation. J. Biomech. Eng. 128(6):925–933, 2006.

    Article  PubMed  Google Scholar 

  32. Pan, Y., D. Sullivan, D. I. Shreiber, and A. A. Pelegri. Finite element modeling of CNS white matter kinematics: use of a 3D RVE to determine material properties. Front. Bioeng. Biotechnol. 1:19, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pesaresi, M., R. Soon-Shiong, L. French, D. R. Kaplan, F. D. Miller, and T. Paus. Axon diameter and axonal transport: in vivo and in vitro effects of androgens. NeuroImage 115:191–201, 2015.

    Article  CAS  PubMed  Google Scholar 

  34. Prange, M. T., and S. S. Margulies. Regional, directional, and age dependent properties of the brain undergoing large deformation. J. Biomech. Eng. 124:244–252, 2002.

    Article  PubMed  Google Scholar 

  35. Rashid, B., M. Destrade, and M. Gilchrist. Mechanical characterization of brain tissue in tension at dynamic strain rates. J. Mech. Behav. Biomed. Mater. 33:43–54, 2012.

    Article  PubMed  Google Scholar 

  36. Reuter, M., N. J. Schmansky, H. D. Rosas, and B. Fischl. Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 61(4):1402–1418, 2012.

    Article  PubMed  Google Scholar 

  37. Sepehrband, F., C. D. Alexander, K. A. Clark, N. D. Kurniawan, Z. Yang, and D. C. Reutens. Parametric Probability distribution functions for axon diameters of corpus callosum. Front. Neuroanat. 10:59, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Smith, H. D., and D. Meaney. Axonal damage in traumatic brain injury. Neuroscientist 6:483–495, 2000.

    Article  Google Scholar 

  39. Takhounts, E. G., J. R. Crandall, and K. Darvish. On the importance of nonlinearity of brain tissue under large deformations. Stapp Car Crash J. 47:79–92, 2003.

    PubMed  Google Scholar 

  40. Tsao, J. W. Traumatic Brain Injury: A Clinician’s Guide to Diagnosis, Management, and Rehabilitation. London: Springer, 2012.

    Book  Google Scholar 

  41. Velardi, F., F. Fraternali, and M. Angelillo. Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech. Model. Mechanobiol. 5:53, 2006.

    Article  CAS  PubMed  Google Scholar 

  42. Wright, R. M., and K. T. Ramesh. An axonal strain injury criterion for traumatic brain injury. Biomech. Model. Mechanobiol. 11:245, 2013.

    Article  Google Scholar 

  43. Wu, T., A. Alshareef, J. S. Giudice, et al. Explicit modeling of white matter axonal fiber tracts in a finite element brain model. Ann. Biomed. Eng. 47:1908, 2019.

    Article  PubMed  Google Scholar 

  44. Jin, X., F. Zhu, M. Haojie, S. Ming, and H. King. A comprehensive experimental study on material properties of human brain tissue. J. Biomech. 46(16):2795–2801, 2013.

    Article  PubMed  Google Scholar 

  45. Yousefsani, S. A., A. Shamloo, and F. Farahmand. Micromechanics of brain white matter tissue: a fiber-reinforced hyperelastic model using embedded element technique. J. Mech. Behav. Biomed. Mater. 80:194–202, 2018.

    Article  PubMed  Google Scholar 

  46. Yousefsani, S. A., A. Shamloo, and F. Farahmand. A three-dimensional micromechanical model of brain white matter with histology-informed probabilistic distribution of axonal fibers. J. Mech. Behav. Biomed. Mater. 88:288–295, 2018.

    Article  PubMed  Google Scholar 

  47. Zemmoura, I., E. Blanchard, P. I. Raynal, et al. How Klingler’s dissection permits exploration of brain structural connectivity? An electron microscopy study of human white matter. Brain Struct. Funct. 221:2477, 2016.

    Article  PubMed  Google Scholar 

Download references

Funding

The funding was provided by Tehran University of Medical Sciences and Health Services (Grant No. 1398).

Conflict of interest

The authors declare that they have no conflict of interest concerning the contents of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzam Farahmand.

Additional information

Associate Editor Xiaoxiang Zheng oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The flowchart of the optimization procedure is shown in Fig. 11.

Figure 11
figure 11

Flowchart of the optimization procedure, based on the imperial competitive algorithm. \(\mu_{\text{axon}} , \mu_{\text{ECM}},\) α are material constants of OGDEN hyperelastic model. Also, \({\text{CF}}_{\perp}\) and \({\text{CF}}_{\parallel }\) stand for the cost functions defined as the deviations of the model and experimental responses in the transverse and axonal directions, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoursan, H., Farahmand, F. & Ahmadian, M.T. A Three-Dimensional Statistical Volume Element for Histology Informed Micromechanical Modeling of Brain White Matter. Ann Biomed Eng 48, 1337–1353 (2020). https://doi.org/10.1007/s10439-020-02458-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02458-4

Keywords

Navigation