Skip to main content
Log in

Identifying Local Arterial Stiffness to Assess the Risk of Rupture of Ascending Thoracic Aortic Aneurysms

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

It was recently submitted that the rupture risk of an ascending thoracic aortic aneurysm (ATAA) is strongly correlated with the aortic stiffness. To validate this assumption, we propose a non-invasive inverse method to identify the patient-specific local extensional stiffness of aortic walls based on gated CT scans. Using these images, the local strain distribution is reconstructed throughout the cardiac cycle. Subsequently, obtained strains are related to tensions, through local equilibrium equations, to estimate the local extensional stiffness at every position. We apply the approach on 11 patients who underwent a gated CT scan before surgical ATAA repair and whose ATAA tissue was tested after the surgical procedure to estimate the rupture risk criterion. We find a very good correlation between the rupture risk criterion and the local extensional stiffness. Finally it is shown that patients can be separated in two groups: a group of stiff and brittle ATAA with a rupture risk criterion above 0.9, and a group of relatively compliant ATAA with a rupture risk below 0.9. Although these results need to be repeated on larger cohorts to impact the clinical practice, they support the paradigm that local aortic stiffness is an important determinant of ATAA rupture risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Antiga, L., and D. Steinman. Robust and objective decomposition and mapping of bifurcating vessels. IEEE Trans. Med. Imaging 23(6):704–713, 2004.

    Article  PubMed  Google Scholar 

  2. Arani, A., S. Arunachalam, I. Chang, F. Baffour, P. Rossman, K. Glaser, J. Trzasko, K. McGee, A. Manduca, M. Grogan, A. Dispenzieri, R. Ehman, and P. Araoz. Cardiac mr elastography for quantitative assessment of elevated myocardial stiffness in cardiac amyloidosis. J. Magn. Reson. Imaging. 46(5):1361–1367, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Avril, S., P. Badel, and A. Duprey. Anisotropic and hyperelastic identification of in vitro human arteries from full-field optical measurements. J. Biomech. 43:2978–2985, 2010.

    Article  PubMed  Google Scholar 

  4. Baek, S., R. Gleason, K. Rajagopal, and J. Humphrey. Theory of small on large: potential utility in computations of fluid–solid interactions in arteries. Comput. Methods Appl. Mech. Eng. 196:3070–3078, 2007.

    Article  Google Scholar 

  5. Bersi, M., C. Belliniand, P. D. Achille, J. Humphrey, K. Genovese, and S. Avril. Novel methodology for characterizing regional variations in the material properties of murine aortas. J. Biomech. Eng. 138:071005, 2016.

    Article  Google Scholar 

  6. Chau, K. and J. Elefteriades. Natural history of thoracic aortic aneurysms: size matters and plus moving beyond size. Prog. Cardiovasc. Dis. 56(1):74–80, 2013.

    Article  PubMed  Google Scholar 

  7. Choudhury, N., B. Olivier, R. Leonie, T. Dominique, C. Raymond, and J. Butany et al. Local mechanical and structural properties of healthy and diseased human ascending aorta tissue. Cardiovasc. Pathol. 18:83–91, 2009.

    Article  PubMed  Google Scholar 

  8. Coady, M., J. Rizzo, G. Hammond, G. Kopf, and J. Elefteriades. Surgical intervention criteria for thoracic aortic aneurysms: a study of growth rates and complications. Ann. Thorac. Surg. 67(6):1922–1926, 1999.

    Article  CAS  PubMed  Google Scholar 

  9. Coady, M., J. Rizzo, G. Hammond, D. Mandapati, U. Darr, G. Kopf, and J. Elefteriades. What is the appropriate size criterion for resection of thoracic aortic aneurysms? J. Thorac. Cardiovasc. Surg. 113(3):476–491, 1997.

    Article  CAS  PubMed  Google Scholar 

  10. Condemi, F., S. Campisi, M. Viallon, T. Troalen, G. Xuexin, A. Barker, M. Markl, P. Croisille, O. T. C. Cavinato, A. Duprey, and S. Avril. Fluid- and biomechanical analysis of ascending thoracic aorta aneurysm with concomitant aortic insufficiency. Ann. Biomed. Eng. 45(12):2921–2932, 2017.

    Article  CAS  PubMed  Google Scholar 

  11. Davis, F., Y. Luo, S. Avril, A. Duprey, and J. Lu. Pointwise characterization of the elastic properties of planar soft tissues: application to ascending thoracic aneurysms. Biomech. Model. Mechanobiol. 14:967–978, 2015.

    Article  PubMed  Google Scholar 

  12. Davis, F., Y. Luo, S. Avril, A. Duprey, and J. Lu. Local mechanical properties of human ascending thoracic aneurysms. J. Mech. Behav. Biomed. Mater. 61:235–249, 2016.

    Article  PubMed  Google Scholar 

  13. Deveja, R., D. Iliopoulos, E. Kritharis, D. Angouras, D. Sfyris, S. Papadodima, and D. Sokolis. Effect of aneurysm and bicuspid aortic valve on layer-specific ascending aorta mechanics. Ann. Thorac. Surg. 106(6):1692–1701, 2018.

    Article  PubMed  Google Scholar 

  14. Duprey, A., K. Khanafer, M. Schlicht, S. Avril, D. Williams, and R. Berguer. In vitro characterisation of physiological and maximum elastic modulus of ascending thoracic aortic aneurysms using uniaxial tensile testing. Eur. J. Vasc. Endovasc. Surg. 39(6):700–707, 2010.

    Article  CAS  PubMed  Google Scholar 

  15. Duprey, A., O. Trabelsi, M. Vola, J. Favre, and S. Avril. Biaxial rupture properties of ascending thoracic aortic aneurysms. Acta Biomater. 42:273–285, 2016.

    Article  PubMed  Google Scholar 

  16. Elefteriades, J. and E. Farkas. Thoracic aortic aneurysm clinically pertinent controversies and uncertainties. J. Am. Coll. Cardiol. 55(9):841–857, 2010.

    Article  CAS  PubMed  Google Scholar 

  17. Farzaneh, S., O. Trabelsi, and S. Avril. Inverse identification of local stiffness across ascending thoracic aortic aneurysms. Biomech. Model. Mechanobiol., 2018.

  18. Ferrara, A., S. Morganti, P. Totaro, A. M. A, and F. Auricchio. Human dilated ascending aorta: Mechanical characterization via uniaxial tensile tests. J. Mech. Behav. Biomed. Mater. 53:257–71, 2016.

  19. Fillinger, M., S. Marra, M. Raghavan, and F. Kennedy. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 37(4):724–732, 2003.

    Article  PubMed  Google Scholar 

  20. Geest Vande, G. J. P., E. D. Martino, A. Bohra, M. Makaroun, and D. Vorp. A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative applicatio. Ann. N. Y. Acad. Sci. 1085:11–21, 2006.

    Article  Google Scholar 

  21. Hibbit, K., and Sorensen. Abaqus-Theory manual, 6.11-3 edition, 2011.

  22. Humphrey, J. Cardiovascular solid mechanics: cells, tissues, and organs. Springer Science & Business Media, 2013.

  23. Iliopoulos, D., E. Kritharis, A. Giagini, and D. S. S.A. Papadodima. Ascending thoracic aortic aneurysms are associated with compositional remodeling and vessel stiffening but not weakening in age-matched subjects. J. Thorac. Cardiovasc. Surg. 137(1):101–109, 2009.

    Article  PubMed  Google Scholar 

  24. Johansson, G., U. Markström, and J. Swedenborg. Ruptured thoracic aortic aneurysms: a study of incidence and mortality rates. J. Vasc. Surg. 21(6):985–988, 1995.

    Article  CAS  PubMed  Google Scholar 

  25. Joldes, G., K. Miller, A. Wittek, and B. Doyle. A simple, effective and clinically applicable method to compute abdominal aortic aneurysm wall stress. J. Mech. Behav. Biomed. Mater. 58:139–148, 2016.

    Article  PubMed  Google Scholar 

  26. Lu, J., X. Zhou, and M. Raghavan. Inverse elastostatic stress analysis in pre-deformed biological structures: demonstration using abdominal aortic aneurysms. J. Biomech. 40:693–696, 2007.

    Article  PubMed  Google Scholar 

  27. Malvindi, P., S. Pasta, G. Raffa, and S. Livesey. Computational fluid dynamics of the ascending aorta before the onset of type a aortic dissection. Eur. J. Cardio-Thorac. Surg. 51(3):597–599, 2016.

    Google Scholar 

  28. Martin, C., W. Sun, T. Pham, and J. Elefteriades. Predictive biomechanical analysis of ascending aortic aneurysm rupture potential. Acta Biomater. 9(12):9392–9400, 2013.

    Article  PubMed  Google Scholar 

  29. Michel, J., G. Jondeau, and D. Milewicz. From genetics to response to injury: vascular smooth muscle cells in aneurysms and dissections of the ascending aorta. Cardiovasc. Res. 114:578–589, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sassani, S., S. Tsangaris, and D. Sokolis. Layer- and region-specific material characterization of ascending thoracic aortic aneurysms by microstructure-based models. J. Biomech. 48(14):3757–3765, 2015.

    Article  PubMed  Google Scholar 

  31. Smoljkić, M., H. Fehervary, P. V. den Bergh, A. Jorge-PeÃśas, L. Kluyskens, S. Dymarkowski, P. Verbrugghe, B. Meuris, J. V. Sloten, and N. Famaey. Biomechanical characterization of ascending aortic aneurysms. Biomech. Model Mechanobiol. 16(2):705–720, 2016.

    Article  PubMed  Google Scholar 

  32. Sokolis, D. Effects of aneurysm on the directional, regional, and layer distribution of residual strains in ascending thoracic aorta. J. Mech. Behav. Biomed. Mater. 46:229–243, 2015.

    Article  PubMed  Google Scholar 

  33. Sokolis, D., E. Kritharis, A. Giagini, K. Lampropoulos, S. Papadodima, and D. Iliopoulos. Biomechanical response of ascending thoracic aortic aneurysms: association with structural remodelling. Comput. Methods Biomech. Biomed. Eng. 15(3):231–248, 2012.

    Article  Google Scholar 

  34. Trabelsi, O., A. Duprey, J. Favre, and S. Avril. Predictive models with patient specific material properties for the biomechanical behavior of ascending thoracic aneurysms. Ann. Biomed. Eng. 44(1):84–98, 2016.

    Article  PubMed  Google Scholar 

  35. Trabelsi, O., M. Gutierrez, S. Farzaneh, A. Duprey, and S. Avril. A non-invasive technique for ATAA rupture risk estimation. J. Biomech., 2017. https://doi.org/10.1016/j.jbiomech.2017.11.012

    Article  PubMed  Google Scholar 

  36. Valentín, A., J. Humphrey, and G. Holzapfel. A multi-layered computational model of coupled elastin degradation, vasoactive dysfunction, and collagenous stiffening in aortic aging. Ann. Biomed. Eng. 39(7):2027–2045, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  37. van Disseldorp, E., N. Petterson, M. Rutten, F. van de Vosse, M. van Sambeek, and R. Lopata. Patient specific wall stress analysis and mechanical characterization of abdominal aortic aneurysms using 4D ultrasound. Eur. J. Vasc. Endovasc. Surg. 52:635–642, 2016.

    Article  PubMed  Google Scholar 

  38. Volokh, K. Comparison of biomechanical failure criteria for abdominal aortic aneurysm. J. Biomech. 43(10):2032–2034, 2010.

    Article  CAS  PubMed  Google Scholar 

  39. Vorp, D., B. Schiro, M. Ehrlich, T. Juvonen, M. Ergin, and B. Griffith. Effect of aneurysm on the tensile strength and biomechanical behavior of the ascending thoracic aorta. Ann. Thorac. Surg. 75:1210–1214, 2003.

    Article  PubMed  Google Scholar 

  40. Wittek, A., K. Karatolios, C. Fritzen, J. Bereiter-Hahn, B. Schieffer, R. Moosdorf, S. Vogt, and C. Blase. Cyclic three-dimensional wall motion of the human ascending and abdominal aorta characterized by time-resolved three-dimensional ultrasound speckle tracking. Biomech. Model Mechanobiol. 15(5):1375–1388, 2016.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the European Research Council for Grant ERC-2014-CoG BIOLOCHANICS.

Conflict of interest

The authors have no conflict of interest to declare concerning the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Avril.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzaneh, S., Trabelsi, O., Chavent, B. et al. Identifying Local Arterial Stiffness to Assess the Risk of Rupture of Ascending Thoracic Aortic Aneurysms. Ann Biomed Eng 47, 1038–1050 (2019). https://doi.org/10.1007/s10439-019-02204-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02204-5

Keywords

Navigation