Skip to main content
Log in

Fluid- and Biomechanical Analysis of Ascending Thoracic Aorta Aneurysm with Concomitant Aortic Insufficiency

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We present a comprehensive and original framework for the biomechanical analysis of patients affected by ascending thoracic aorta aneurysm and aortic insufficiency. Our aim is to obtain crucial indications about the role played by deranged hemodynamics on the ATAAs risk of rupture. Computational fluid dynamics analysis was performed using patient-specific geometries and boundary conditions derived from 4D MRI. Blood flow helicity and wall shear stress descriptors were assessed. A bulge inflation test was carried out in vitro on the 4 ATAAs after surgical repair. The healthy volunteers showed no eccentric blood flow, a mean TAWSS of 1.5 ± 0.3 Pa and mean OSI of 0.325 ± 0.025. In 3 aneurismal patients, jet flow impingement on the aortic wall resulted in large TAWSS values and low OSI which were amplified by the AI degree. However, the tissue strength did not appear to be significantly reduced. The fourth patient, which showed the lowest TAWSS due to the absence of jet flow, had the smallest strength in vitro. Interestingly this patient presented a bovine arch abnormality. Jet flow impingement with high WSS values is frequent in ATAAs and our methodology seems to be appropriate for determining whether it may increase the risk of rupture or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Al-Atassi, T., M. Hynes, B. Sohmer, B.-K. Lam, T. Mesana, and M. Boodhwani. Aortic root geometry in bicuspid aortic insufficiency versus stenosis: implications for valve repair. Eur. J. Cardiothorac. Surg. 47:e151–e154, 2015.

    Article  PubMed  Google Scholar 

  2. Barker, A. J., C. Lanning, and R. Shandas. Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast MRI. Ann. Biomed. Eng. 38:788–800, 2010.

    Article  PubMed  Google Scholar 

  3. Barker, A. J., M. Markl, J. Bürk, R. Lorenz, J. Bock, S. Bauer, J. Schulz-Menger, and F. von Knobelsdorff-Brenkenhoff. Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ. Cardiovasc. Imaging 5:457–466, 2012.

    Article  PubMed  Google Scholar 

  4. Bellini, C., A. Korneva, L. Zilberberg, F. Ramirez, D. B. Rifkin, and J. D. Humphrey. Differential ascending and descending aortic mechanics parallel aneurysmal propensity in a mouse model of Marfan syndrome. J. Biomech. 49:2383–2389, 2016.

    Article  CAS  PubMed  Google Scholar 

  5. Bürk, J., P. Blanke, Z. Stankovic, A. J. Barker, M. Russe, J. Geiger, A. Frydrychowicz, M. Langer, and M. Markl. Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR. J. Cardiovasc. Magn. Reson. 14:84, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Callaghan, F. M., J. Karkouri, K. Broadhouse, M. Evin, D. F. Fletcher, and S. M. Grieve. Thoracic aortic aneurysm: 4D flow MRI and computational fluid dynamics model. Comput. Methods Biomech. Biomed. Eng. 18:1894–1895, 2015.

    Article  Google Scholar 

  7. Chau, K. H., and J. A. Elefteriades. Natural history of thoracic aortic aneurysms: size matters, plus moving beyond size. Prog. Cardiovasc. Dis. 56:74–80, 2013.

    Article  PubMed  Google Scholar 

  8. Childs, H., L. Ma, M. Ma, J. Clarke, M. Cocker, J. Green, O. Strohm, and M. G. Friedrich. Comparison of long and short axis quantification of left ventricular volume parameters by cardiovascular magnetic resonance, with ex vivo validation. J. Cardiovasc. Magn. Reson. 13:40, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Choudhury, N., O. Bouchot, L. Rouleau, D. Tremblay, R. Cartier, J. Butany, R. Mongrain, and R. L. Leask. Local mechanical and structural properties of healthy and diseased human ascending aorta tissue. Cardiovasc. Pathol. 18:83–91, 2009.

    Article  PubMed  Google Scholar 

  10. David, T. E., C. M. Feindel, and J. Bos. Repair of the aortic valve in patients with aortic insufficiency and aortic root aneurysm. J. Thorac. Cardiovasc. Surg. 109:345–352, 1995.

    Article  CAS  PubMed  Google Scholar 

  11. Dillon-Murphy, D., A. Noorani, D. Nordsletten, and C. A. Figueroa. Multi-modality image-based computational analysis of haemodynamics in aortic dissection. Biomech. Model. Mechanobiol. 15:857–876, 2016.

    Article  PubMed  Google Scholar 

  12. Duprey, A., O. Trabelsi, M. Vola, J.-P. Favre, and S. Avril. Biaxial rupture properties of ascending thoracic aortic aneurysms. Acta Biomater. 42:273–285, 2016.

    Article  PubMed  Google Scholar 

  13. Fytanidis, D. K., J. V. Soulis, and G. D. Giannoglou. Patient-specific arterial system flow oscillation. Hippokratia 18:162–165, 2014.

    PubMed  PubMed Central  Google Scholar 

  14. Gallo, D., D. A. Steinman, P. B. Bijari, and U. Morbiducci. Helical flow in carotid bifurcation as surrogate marker of exposure to disturbed shear. J. Biomech. 45(14):2398–2404, 2012.

    Article  PubMed  Google Scholar 

  15. Garcia, J., A. J. Barker, J. D. Collins, J. C. Carr, and M. Markl. Volumetric quantification of absolute local normalized helicity in patients with bicuspid aortic valve and aortic dilatation. Magn. Res. Med. 78:689–701, 2017.

    Article  Google Scholar 

  16. Gijsen, F. J. H., F. N. van de Vosse, and J. D. Janssen. The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. J. Biomech. 32:601–608, 1999.

    Article  CAS  PubMed  Google Scholar 

  17. Girdauskas, E., and M. Rouman. Is there any difference in aortic wall quality between patients with bicuspid aortic valve stenosis and those with bicuspid aortic valve insufficiency? Eur. J. Cardiothorac Surg. 2:337, 2014.

    Article  Google Scholar 

  18. Guzzardi, D. G., A. J. Barker, P. van Ooij, S. C. Malaisrie, J. J. Puthumana, D. D. Belke, H. E. M. Mewhort, D. A. Svystonyuk, S. Kang, S. Verma, J. Collins, J. Carr, R. O. Bonow, M. Markl, J. D. Thomas, P. M. McCarthy, and P. W. M. Fedak. Valve-related hemodynamics mediate human bicuspid aortopathy: insights from wall shear stress mapping. J. Am. Coll. Cardiol. 66:892–900, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hope, M. D., M. Sigovan, S. J. Wrenn, D. Saloner, and P. Dyverfeldt. Magnetic resonance imaging hemodynamic markers of progressive bicuspid aortic valve related aortic disease. J. Magn. Reson. Imaging 40:140–145, 2014.

    Article  PubMed  Google Scholar 

  20. Hornick, M., R. Moomiaie, H. Mojibian, B. Ziganshin, Z. Almuwaqqat, E. S. Lee, J. A. Rizzo, M. Tranquilli, and J. A. Elefteriades. ‘Bovine’ aortic arch—a marker for thoracic aortic disease. Cardiology 123:116–124, 2012.

    Article  PubMed  Google Scholar 

  21. Humphrey, J. D. Cardiovascular Solid Mechanics. New York: Springer, 2002.

    Book  Google Scholar 

  22. Humphrey, J. D., M. A. Schwartz, G. Tellides, and D. M. Milewicz. Role of mechanotransduction in vascular biology: focus on thoracic aortic aneurysms and dissections. Circ. Res. 116:1448–1461, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Isselbacher, E. M. Thoracic and abdominal aortic aneurysms. Circulation 111:816–828, 2005.

    Article  PubMed  Google Scholar 

  24. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5:293–302, 1985.

    Article  CAS  PubMed  Google Scholar 

  25. Lantz, J., J. Renner, and M. Karlsson. Wall shear stress in a subject specific human aorta—influence of fluid-structure interaction. Int. J. Appl. Mech. 03:759–778, 2011.

    Article  Google Scholar 

  26. Layton, K. F., D. F. Kallmes, H. J. Cloft, E. P. Lindell, and V. S. Cox. Bovine aortic arch variant in humans: clarification of a common misnomer. Am. J. Neuroradiol. 27:1541–1542, 2006.

    CAS  PubMed  Google Scholar 

  27. Michelena, H. I., S. K. Prakash, A. Della Corte, M. M. Bissell, N. Anavekar, P. Mathieu, Y. Bossé, G. Limongelli, E. Bossone, D. W. Benson, P. Lancellotti, E. M. Isselbacher, M. Enriquez-Sarano, T. M. Sundt, 3rd, P. Pibarot, A. Evangelista, D. M. Milewicz, S. C. Body, and BAVCon Investigators. Bicuspid aortic valve: identifying knowledge gaps and rising to the challenge from the international bicuspid aortic valve consortium (BAVCon). Circulation 129:2691–2704, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Morbiducci, U., R. Ponzini, D. Gallo, C. Bignardi, and G. Rizzo. Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta. J. Biomech. 46:102–109, 2013.

    Article  PubMed  Google Scholar 

  29. Morbiducci, U., R. Ponzini, M. Grigioni, and A. Redaelli. Helical flow as fluid dynamic signature for atherogenesis risk in aortocoronary bypass. A numeric study. J. Biomech. 40:519–534, 2007.

    Article  PubMed  Google Scholar 

  30. Morbiducci, U., R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F. De Cobelli, A. Del Maschio, F. M. Montevecchi, and A. Redaelli. In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Ann. Biomed. Eng. 37(3):516–531, 2009.

    Article  PubMed  Google Scholar 

  31. Morbiducci, U., R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F. M. Montevecchi, and A. Redaelli. Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. Biomech. Model. Mechanobiol. 10:339–355, 2011.

    Article  PubMed  Google Scholar 

  32. O’Rourke, M. F., and J. Hashimoto. Mechanical factors in arterial aging: a clinical perspective. J. Am. Coll. Cardiol. 50:1–13, 2007.

    Article  PubMed  Google Scholar 

  33. Pasta, S., A. Rinaudo, A. Luca, M. Pilato, C. Scardulla, T. G. Gleason, and D. A. Vorp. Difference in hemodynamic and wall stress of ascending thoracic aortic aneurysms with bicuspid and tricuspid aortic valve. J. Biomech. 46:1729–1738, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Redheuil, A., W. C. Yu, E. Mousseaux, A. A. Harouni, N. Kachenoura, C. O. Wu, D. Bluemke, and J. A. C. Lima. Age-related changes in aortic arch geometry: relationship with proximal aortic function and left ventricular mass and remodeling. J. Am. Coll. Cardiol. 58:1262–1270, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sigovan, M., M. D. Hope, P. Dyverfeldt, and D. Saloner. Comparison of four-dimensional flow parameters for quantification of flow eccentricity in the ascending aorta. J. Magn. Reson. Imaging 34(5):1226–1230, 2011.

    Article  PubMed  Google Scholar 

  36. Soudah, E., E. Y. K. Ng, T. H. Loong, M. Bordone, U. Pua, and S. Narayanan. CFD modelling of abdominal aortic aneurysm on hemodynamic loads using a realistic geometry with CT. Comput. Math. Methods Med. 2013, 2013.

  37. Strecker, C., A. Harloff, W. Wallis, and M. Markl. Flow-sensitive 4D MRI of the thoracic aorta: comparison of image quality, quantitative flow, and wall parameters at 1.5 T and 3 T. J. Magn. Reson. Imaging 36:1097–1103, 2012.

    Article  PubMed  Google Scholar 

  38. Trabelsi, O., F. M. Davis, J. F. Rodriguez-Matas, A. Duprey, and S. Avril. Patient specific stress and rupture analysis of ascending thoracic aneurysms. J. Biomech. 48:1836–1843, 2015.

    Article  PubMed  Google Scholar 

  39. Tse, K. M., P. Chiu, H. P. Lee, and P. Ho. Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. J. Biomech. 44:827–836, 2011.

    Article  PubMed  Google Scholar 

  40. Xiao, N., J. D. Humphrey, and C. A. Figueroa. Multi-scale computational model of three- dimensional hemodynamics within a deformable full-body arterial network. J. Comput. Phys. 244:2–40, 2013.

    Article  Google Scholar 

  41. Youssefi, P., A. Gomez, H. Taigang, L. Anderson, N. Bunce, R. Sharma, C. A. Figueroa, and M. Jahangiri. Patient-specific computational fluid dynamics and assessment of aortic hemodynamics in a spectrum of aortic valve pathologies. J. Thorac. Cardiovasc. Surg. 153(1):8–20.e3, 2017.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the European Research Council (ERC Grant biolochanics, Grant Number 647067). We thank Dr Morbiducci and Dr Gallo from Polytechnic of Turin (Italy) who provided insight and expertise that greatly assisted this research. We are also grateful to Ansys, Inc. for providing Ansys-Fluent (ANSYS® Academic Research, Release 17.0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Condemi.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Appendix

Appendix

See Fig. 6.

Figure 6
figure 6

Pressure plots for the different case studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Condemi, F., Campisi, S., Viallon, M. et al. Fluid- and Biomechanical Analysis of Ascending Thoracic Aorta Aneurysm with Concomitant Aortic Insufficiency. Ann Biomed Eng 45, 2921–2932 (2017). https://doi.org/10.1007/s10439-017-1913-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1913-6

Keywords

Navigation