Skip to main content
Log in

Immersive Virtual Reality to Improve Walking Abilities in Cerebral Palsy: A Pilot Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Immersive virtual reality (IVR) offers new possibilities to perform treatments in an ecological and interactive environment with multimodal online feedbacks. Sixteen school-aged children (mean age 11 ± 2.4 years) with Bilateral CP—diplegia, attending mainstream schools were recruited for a pilot study in a pre–post treatment experimental design. The intervention was focused on walking competences and endurance and performed by the Gait Real-time Analysis Interactive Lab (GRAIL), an innovative treadmill platform based on IVR. The participants underwent eighteen therapy sessions in 4 weeks. Functional evaluations, instrumental measures including GAIT analysis and parental questionnaire were utilized to assess the treatment effects. Walking pattern (stride length left and right side, respectively p = 0.001 and 0.003; walking speed p = 0.001), endurance (6MWT, p = 0.026), gross motor abilities (GMFM-88, p = 0.041) and most kinematic and kinetic parameters significantly improved after the intervention. The changes were mainly predicted by age and cognitive abilities. The effect could have been due to the possibility of IVR to foster integration of motor/perceptual competences beyond the training of the walking ability, giving a chance of improvement also to older and already treated children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Andersson, C., L. Asztalos, and E. Mattsson. Six-minute walk test in adults with cerebral palsy. A study of reliability. Clin. Rehabil. 20:488–495, 2006.

    Article  PubMed  Google Scholar 

  2. Bax, M., M. Goldstein, P. Rosenbaum, A. Leviton, N. Paneth, B. Dan, B. Jacobsson, D. Damiano, and Executive Committee for the Definition of Cerebral Palsy. Proposed definition and classification of cerebral palsy, April 2005. Dev. Med. Child Neurol. 47(571–576):2005, 2005.

    Google Scholar 

  3. Beltran, E. J., J. B. Dingwell, and J. M. Wilken. Margins of stability in young adults with traumatic transtibial amputation walking in destabilizing environments. J. Biomech. 47:1138–1143, 2014.

    Article  PubMed  Google Scholar 

  4. Biffi, E., E. Beretta, A. Cesareo, C. Maghini, A. C. Turconi, G. Reni, and S. Strazzer. An immersive virtual reality platform to enhance walking ability of children with acquired brain injuries. Methods Inf. Med. 56(2):119–126, 2017.

    Article  PubMed  Google Scholar 

  5. Bohannon, R. W., and M. B. Smith. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys. Ther. 67:206–207, 1987.

    Article  CAS  PubMed  Google Scholar 

  6. Bottcher, L. Children with spastic cerebral palsy, their cognitive functioning, and social participation: a review. Child. Neuropsychol. 16:209–228, 2010.

    Article  PubMed  Google Scholar 

  7. Cameirao, M. S., S. B. Badia, E. Duarte, A. Frisoli, and P. F. Verschure. The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke 43:2720–2728, 2012.

    Article  PubMed  Google Scholar 

  8. Cho, C., W. Hwang, S. Hwang, and Y. Chung. Treadmill training with virtual reality improves gait, balance, and muscle strength in children with cerebral palsy. Tohoku J. Exp. Med. 238:213–218, 2016.

    Article  PubMed  Google Scholar 

  9. Damiano, D. L., K. E. Alter, and H. Chambers. New clinical and research trends in lower extremity management for ambulatory children with cerebral palsy. Phys. Med. Rehabil. Clin. N. Am. 20:469–491, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Darter, B. J., and J. M. Wilken. Gait training with virtual reality-based real-time feedback: improving gait performance following transfemoral amputation. Phys. Ther. 91:1385–1394, 2011.

    Article  PubMed  Google Scholar 

  11. Druzbicki, M., W. Rusek, S. Snela, J. Dudek, M. Szczepanik, E. Zak, J. Durmala, A. Czernuszenko, M. Bonikowski, and G. Sobota. Functional effects of robotic-assisted locomotor treadmill therapy in children with cerebral palsy. J. Rehabil. Med. 45:358–363, 2013.

    Article  PubMed  Google Scholar 

  12. Druzbicki, M., W. Rusek, M. Szczepanik, J. Dudek, and S. Snela. Assessment of the impact of orthotic gait training on balance in children with cerebral palsy. Acta Bioeng. Biomech. 12:53–58, 2010.

    PubMed  Google Scholar 

  13. Fung, J., C. L. Richards, F. Malouin, B. J. McFadyen, and A. Lamontagne. A treadmill and motion coupled virtual reality system for gait training post-stroke. Cyberpsychol. Behav. 9:157–162, 2006.

    Article  PubMed  Google Scholar 

  14. Gagliardi, C., A. Tavano, A. C. Turconi, and R. Borgatti. Sequence memory skills in spastic bilateral cerebral palsy are age independent as in normally developing children. Disabil. Rehabil. 35:506–512, 2013.

    Article  PubMed  Google Scholar 

  15. Geijtenbeek, T., F. Steenbrink, B. Otten, and O. Even-Zohar. D-flow: immersive virtual reality and real-time feedback for rehabilitation. Proceedings of the VRCAI 2011, 2011, pp. 201–208.

  16. Gutierrez, R. O., F. Galan Del Rio, R. Cano de la Cuerda, I. M. Alguacil Diego, R. A. Gonzalez, and J. C. Page. A telerehabilitation program by virtual reality-video games improves balance and postural control in multiple sclerosis patients. NeuroRehabilitation 33:545–554, 2013.

    PubMed  Google Scholar 

  17. Hak, L., H. Houdijk, P. van der Wurff, M. R. Prins, A. Mert, P. J. Beek, and J. H. van Dieen. Stepping strategies used by post-stroke individuals to maintain margins of stability during walking. Clin. Biomech. (Bristol, Avon) 28:1041–1048, 2013.

    Article  Google Scholar 

  18. Kaufman, K. R., M. P. Wyatt, P. H. Sessoms, and M. D. Grabiner. Task-specific fall prevention training is effective for warfighters with transtibial amputations. Clin. Orthop. Relat. Res. 472:3076–3084, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lamontagne, A., J. Fung, B. J. McFadyen, and J. Faubert. Modulation of walking speed by changing optic flow in persons with stroke. J. Neuroeng. Rehabil. 4:22, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Luna-Oliva, L., R. M. Ortiz-Gutierrez, R. Cano-de la Cuerda, R. M. Piedrola, I. M. Alguacil-Diego, C. Sanchez-Camarero, and C. Martinez Culebras Mdel. Kinect Xbox 360 as a therapeutic modality for children with cerebral palsy in a school environment: a preliminary study. NeuroRehabilitation 33:513–521, 2013.

    PubMed  Google Scholar 

  21. McAndrew, P. M., J. B. Dingwell, and J. M. Wilken. Walking variability during continuous pseudo-random oscillations of the support surface and visual field. J. Biomech. 43:1470–1475, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Meyer-Heim, A., C. Ammann-Reiffer, A. Schmartz, J. Schafer, F. H. Sennhauser, F. Heinen, B. Knecht, E. Dabrowski, and I. Borggraefe. Improvement of walking abilities after robotic-assisted locomotion training in children with cerebral palsy. Arch. Dis. Child. 94:615–620, 2009.

    Article  CAS  PubMed  Google Scholar 

  23. Mutlu, A., K. Krosschell, and D. G. Spira. Treadmill training with partial body-weight support in children with cerebral palsy: a systematic review. Dev. Med. Child Neurol. 51:268–275, 2009.

    Article  PubMed  Google Scholar 

  24. Novacheck, T. F., J. L. Stout, and R. Tervo. Reliability and validity of the Gillette Functional Assessment Questionnaire as an outcome measure in children with walking disabilities. J. Pediatr. Orthop. 20:75–81, 2000.

    CAS  PubMed  Google Scholar 

  25. Oeffinger, D., A. Bagley, S. Rogers, G. Gorton, R. Kryscio, M. Abel, D. Damiano, D. Barnes, and C. Tylkowski. Outcome tools used for ambulatory children with cerebral palsy: responsiveness and minimum clinically important differences. Dev. Med. Child Neurol. 50:918–925, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. O’Neil, R. L., R. L. Skeel, and K. I. Ustinova. Cognitive ability predicts motor learning on a virtual reality game in patients with TBI. NeuroRehabilitation 33:667–680, 2013.

    PubMed  Google Scholar 

  27. Palisano, R., P. Rosenbaum, S. Walter, D. Russell, E. Wood, and B. Galuppi. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev. Med. Child Neurol. 39:214–223, 1997.

    Article  CAS  PubMed  Google Scholar 

  28. Palisano, R. J., L. A. Chiarello, M. Orlin, D. Oeffinger, M. Polansky, J. Maggs, A. Bagley, G. Gorton, and Children’s Activity and Participation Group. Determinants of intensity of participation in leisure and recreational activities by children with cerebral palsy. Dev. Med. Child Neurol. 53:142–149, 2011.

    Article  PubMed  Google Scholar 

  29. Peri, E., A. C. Turconi, E. Biffi, C. Maghini, D. Panzeri, R. Morganti, A. Pedrocchi, and C. Gagliardi. Effects of dose and duration of robot-assisted gait training on walking ability of children affected by cerebral palsy. Technol. Health Care 25(4):671–681, 2017.

    Article  PubMed  Google Scholar 

  30. Rosie, J. A., S. Ruhen, W. A. Hing, and G. N. Lewis. Virtual rehabilitation in a school setting: is it feasible for children with cerebral palsy? Disabil. Rehabil. Assist. Technol. 10:19–26, 2015.

    Article  PubMed  Google Scholar 

  31. Sessoms, P. H., M. Wyatt, M. Grabiner, J. D. Collins, T. Kingsbury, N. Thesing, and K. Kaufman. Method for evoking a trip-like response using a treadmill-based perturbation during locomotion. J. Biomech. 47:277–280, 2014.

    Article  PubMed  Google Scholar 

  32. Sigurdardottir, S., A. Eiriksdottir, E. Gunnarsdottir, M. Meintema, U. Arnadottir, and T. Vik. Cognitive profile in young Icelandic children with cerebral palsy. Dev. Med. Child Neurol. 50:357–362, 2008.

    Article  PubMed  Google Scholar 

  33. Sloot, L. H., J. Harlaar, and M. M. van der Krogt. Self-paced versus fixed speed walking and the effect of virtual reality in children with cerebral palsy. Gait Posture 42:498–504, 2015.

    Article  PubMed  Google Scholar 

  34. Sloot, L. H., M. M. van der Krogt, and J. Harlaar. Self-paced versus fixed speed treadmill walking. Gait Posture 39:478–484, 2014.

    Article  CAS  PubMed  Google Scholar 

  35. Stadskleiv, K., R. Jahnsen, G. L. Andersen, and S. von Tetzchner. Neuropsychological profiles of children with cerebral palsy. Dev. Neurorehabil 2017. https://doi.org/10.1080/17518423.2017.1282054.

    Article  PubMed  Google Scholar 

  36. Turconi, A. C., E. Biffi, C. Maghini, E. Peri, F. Servodio Iammarone, and C. Gagliardi. Can new technologies improve upper limb performance in grown-up diplegic children? Eur. J. Phys. Rehabil. Med. 52:672–681, 2016.

    PubMed  Google Scholar 

  37. van den Bogert, A. J., T. Geijtenbeek, O. Even-Zohar, F. Steenbrink, and E. C. Hardin. A real-time system for biomechanical analysis of human movement and muscle function. Med. Biol. Eng. Comput. 51:1069–1077, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  38. van der Krogt, M. M., L. H. Sloot, A. I. Buizer, and J. Harlaar. Kinetic comparison of walking on a treadmill versus over ground in children with cerebral palsy. J. Biomech. 48:3577–3583, 2015.

    Article  PubMed  Google Scholar 

  39. van der Krogt, M. M., L. H. Sloot, and J. Harlaar. Overground versus self-paced treadmill walking in a virtual environment in children with cerebral palsy. Gait Posture 40:587–593, 2014.

    Article  PubMed  Google Scholar 

  40. van Gelder, L., A. T. Booth, I. van de Port, A. I. Buizer, J. Harlaar, and M. M. van der Krogt. Real-time feedback to improve gait in children with cerebral palsy. Gait Posture 52:76–82, 2017.

    Article  PubMed  Google Scholar 

  41. Wechsler, D. Wechsler Intelligence Scale for Children Revised. New York: Psychological Corporation, 1974.

    Google Scholar 

  42. Yu, Y., and T. A. Stoffregen. Postural and locomotor contributions to affordance perception. J. Mot. Behav. 44:305–311, 2012.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Gagliardi.

Additional information

Associate Editor Kerry Hourigan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagliardi, C., Turconi, A.C., Biffi, E. et al. Immersive Virtual Reality to Improve Walking Abilities in Cerebral Palsy: A Pilot Study. Ann Biomed Eng 46, 1376–1384 (2018). https://doi.org/10.1007/s10439-018-2039-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2039-1

Keywords

Navigation