Skip to main content
Log in

The Turning Point for Morphomechanical Remodeling During Complete Intestinal Obstruction in Rats Occurs After 12–24 h

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Intestinal obstruction prompts luminal dilation and wall remodeling proximal to the site of obstruction. Studies on temporal and spatial morphomechanical remodeling are needed for comprehending the pathophysiology of acute intestinal obstruction. The aim was to estimate the no-load and zero-stress morphomechanical properties in circumferential and longitudinal direction at 0, 6, 12, 24, 36, and 48 h after complete intestinal obstruction. Obstruction of the distal ileum was created surgically by placement of a polyethylene ring for up to 48 h in 30 rats. Sham and normal groups were also studied (n = 12). Five 6 cm-long intestinal segments proximal to the obstruction site were used for histological, morphometric and mechanical analysis at the designated times. Morphomechanical changes were huge but only subtle changes were observed between the 5 segments during the obstruction period. Due to dilation, the serosal length and mucosal length increased continuously from 6 to 48 h (p < 0.001). The wall area increased at 24 h and beyond (p < 0.001), demonstrating tissue growth. The opening and bending angle decreased to minimum values at 24 h where after the opening angle increased and the bending angle returned to pre-obstruction levels. For the residual stretch ratios and the position of the neutral axis the turning point was found after 24 h. Histologically, the thickness and area of most wall layers were quite stable for the first 12 h but with an increase at the 24 h time point that continued to the 48 h time point. The most pronounced change was found for the circumferential muscle layer (p < 0.05). Analysis of picrosirius red stained slides showed that submucosal type 3 collagen fraction increased significantly (p < 0.001), whereas the fraction of type 1 collagen decreased (p < 0.001). In conclusion, pronounced time-dependent morphomechanical remodeling was found. The obstructed intestine went from dilation remodeling to growth remodeling during the interval 12–24 h after creating the obstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bertoni, S., and G. Gabella. Hypertrophy of mucosa and serosa in the obstructed intestine of rats. J. Anat. 199:725–734, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bertoni, S., G. Gabella, P. Ghizzardi, V. Ballabeni, M. Impicciatore, C. Lagrasta, M. L. Arcari, and E. Barocelli. Motor responses of rat hypertrophic intestine following chronic obstruction. Neurogastr. Motil. 16:365–374, 2004.

    Article  CAS  Google Scholar 

  3. Chang, I. Y., N. J. Glasgow, I. Takayama, K. Horiguchi, K. M. Sanders, and S. M. Ward. Loss of interstitial cells of Cajal and development of electrical dysfunction in murine small bowel obstruction. J. Physiol. 536:555–568, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Giorgio, R., R. F. Cogliandro, G. Barbara, R. Corinaldesi, and V. Stanghellini. Chronic intestinal pseudo-obstruction: clinical features, diagnosis, and therapy. Gastroenterol. Clin. N. Am. 40:787–807, 2011.

    Article  Google Scholar 

  5. DiBaise, J. K., and E. M. Quigley. Tumor-related dysmotility: gastrointestinal dysmotility syndromes associated with tumors. Dig. Dis. Sci. 43:1369–1401, 1998.

    Article  CAS  PubMed  Google Scholar 

  6. Díte, P., J. Lata, and I. Novotný. Intestinal obstruction and perforation—the role of the gastroenterologist. Dig. Dis. 21:63–67, 2003.

    Article  PubMed  Google Scholar 

  7. Ekblad, E., R. Sjuve, A. Arner, and F. Sundler. Enteric neuronal plasticity and a reduced number of interstitial cells of Cajal in hypertrophic rat ileum. Gut 42:836–844, 1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fung, Y. C. Biomechaincs. Properties of Living Tissues. Berlin: Springer, 1993.

    Book  Google Scholar 

  9. Gabella, G. Development and ageing of intestinal musculature and nerves: the guinea-pig taenia coli. J. Neurocytol. 30:733–766, 2001.

    Article  CAS  PubMed  Google Scholar 

  10. Geuna, S., S. Cardillo, and M. G. Giacobini-Robecchi. Smooth muscle cell hypertrophy and hyperplasia in the partially obstructed gut of the rat: a quantitative evaluation. Cells Tissues Organs 163:69–74, 1998.

    Article  CAS  Google Scholar 

  11. Gregersen, H. Biomechanics of the Gastrointestinal Tract. London: Springer, 2002.

    Google Scholar 

  12. Gregersen, H., J. L. Emery, and A. D. McCulloch. History-dependent mechanical behavior of guinea-pig small intestine. Ann. Biomed. Eng. 26:850–858, 1998.

    Article  CAS  PubMed  Google Scholar 

  13. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000.

    Article  Google Scholar 

  14. Katis, P. G., and S. M. Dias. Volvulus: a rare twist on small-bowel obstruction. Can. Med. Assoc. J. 171:728, 2004.

    Article  Google Scholar 

  15. Lattouf, R., R. Younes, D. Lutomski, N. Naaman, G. Godeau, K. Senni, and S. Changotade. Picrosirius red staining: a useful tool to appraise collagen networks in normal and pathological tissues. J. Histochem. Cytochem. 62:751–758, 2014.

    Article  PubMed  Google Scholar 

  16. Lawrance, I. C., G. Rogler, G. Bamias, C. Breynaert, J. Florholmen, G. Pellino, S. Reif, S. Speca, and G. Latella. Cellular and molecular mediators of intestinal fibrosis. J. Crohns Colitis 11(12):1491–1503, 2015.

    PubMed Central  Google Scholar 

  17. Liao, D., J. Zhao, and H. Gregersen. 3d Mechanical properties of the partially obstructed guinea pig small intestine. J. Biomech. 43:2079–2086, 2010.

    Article  PubMed  Google Scholar 

  18. Liu, D. H., X. Huang, X. Guo, X. M. Meng, Y. S. Wu, H. L. Lu, C. M. Zhang, Y. C. Kim, and W. X. Xu. Voltage dependent potassium channel remodeling in murine intestinal smooth muscle hypertrophy induced by partial obstruction. PLoS ONE 9:e86109, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Markogiannakis, H., E. Messaris, D. Dardamanis, N. Pararas, D. Tzertzemelis, P. Giannopoulos, A. Larentzakis, E. Lagoudianakis, A. Manouras, and I. Bramis. Acute mechanical bowel obstruction: clinical presentation, etiology, management and outcome. World J. Gastroenterol. 13:432–437, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Miyamoto, M., K. Egami, S. Maeda, K. Ohkawa, N. Tanaka, E. Uchida, and T. Tajiri. Hirschsprung’s disease in adults: report of a case and review of the literature. J. Nippon Med. Sch. 72:113–120, 2005.

    Article  PubMed  Google Scholar 

  21. Nguyen, V. H. Intestinal obstruction due to tuberculosis. Asian J. Surg. 25:145–148, 2002.

    Article  PubMed  Google Scholar 

  22. Prihoda, M., A. Flatt, and R. W. Summers. Mechanisms of motility changes during acute intestinal obstruction in the dog. Am. J. Physiol. 247:G37–G42, 1984.

    CAS  PubMed  Google Scholar 

  23. Silva, A. C., M. Pimenta, and L. S. Guimaraes. Small bowel obstruction: what to look for. Radiographics 29:423–439, 2009.

    Article  PubMed  Google Scholar 

  24. Storkholm, J. H., J. Zhao, G. E. Villadsen, and H. Gregersen. Spontaneous and bolus-induced motility in the chronically obstructed guinea-pig small intestine in vitro. Dig. Dis. Sci. 53:413–420, 2008.

    Article  PubMed  Google Scholar 

  25. Storkholm, J. H., J. Zhao, G. E. Villadsen, H. Hager, S. L. Jensen, and H. Gregersen. Biomechanical remodeling of the chronically obstructed Guinea pig small intestine. Dig. Dis. Sci. 52:336–346, 2007.

    Article  PubMed  Google Scholar 

  26. Sun, D., J. Zhao, D. Liao, P. Chen, and H. Gregersen. Shear modulus of the partially obstructed rat small intestine. Ann. Biomed. Eng. 45:1069–1082, 2017.

    Article  PubMed  Google Scholar 

  27. Tuca, A., E. Guell, E. Martinez-Losada, and N. Codorniu. Malignant bowel obstruction in advanced cancer patients: epidemiology, management, and factors influencing spontaneous resolution. Cancer Manag. Res. 4:159–169, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vilz, T. O., B. Stoffels, C. Strassburg, H. H. Schild, and J. C. Kalff. Ileus in Adults. Dtsch. Arztebl. Int. 114:508–518, 2017.

    PubMed  Google Scholar 

  29. Wilkins, B. M., and L. Spitz. Incidence of postoperative adhesion obstruction following neonatal laparotomy. Br. J. Surg. 73:762–764, 1986.

    Article  CAS  PubMed  Google Scholar 

  30. Wu, C. C., Y. M. Lin, J. Gao, J. H. Winston, L. K. Cheng, and X. Z. Shi. Are interstitial cells of Cajal involved in mechanical stress-induced gene expression and impairment of smooth muscle contractility in bowel obstruction? PLoS ONE 8:e76222, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yamada, H., and F. G. Evans. Strength of Biological Materials. Baltimore: Williams & Wilkins, 1970.

    Google Scholar 

  32. Yang, J., J. Zhao, P. Chen, T. Nakaguchi, D. Grundy, and H. Gregersen. Interdependency between mechanical parameters and afferent nerve discharge in hypertrophic intestine of rats. Am. J. Physiol-Gastr. Liver Physiol. 310:G376–G386, 2016.

    Google Scholar 

  33. Zhao, J., D. Liao, J. Yang, and H. Gregersen. Biomechanical remodelling of obstructed guinea pig jejunum. J. Biomech. 43:1322–1329, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhao, J., D. Liao, J. Yang, and H. Gregersen. Phasic and tonic smooth muscle function of the partially obstructed guinea pig intestine. J. Biomed. Biotechnol. 2011:489720, 2011.

    PubMed  PubMed Central  Google Scholar 

  35. Zhao, J., D. Liao, J. Yang, and H. Gregersen. Stress and strain analysis of contractions during ramp distension in partially obstructed guinea pig jejunal segments. J. Biomech. 44:2077–2082, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zissin, R., M. Hertz, H. Paran, J. Bernheim, M. Shapiro-Feinberg, and G. Gayer. Small bowel obstruction secondary to Crohn disease: CT findings. Abdom. Imaging 29:320–325, 2004.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially supported by a grant from Chongqing Science and Technology Commission (cstc2013kjrc-ljrccj10003) and National “111 Plan” Base (B06023) and Karen Elise Jensen foundation. These contributions did not constitute any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Gregersen.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D., Zhao, J., Liao, D. et al. The Turning Point for Morphomechanical Remodeling During Complete Intestinal Obstruction in Rats Occurs After 12–24 h. Ann Biomed Eng 46, 705–716 (2018). https://doi.org/10.1007/s10439-018-1992-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-1992-z

Keywords

Navigation