Skip to main content
Log in

Non Invasive Blood Flow Features Estimation in Cerebral Arteries from Uncertain Medical Data

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A methodology for non-invasive estimation of the pressure in internal carotid arteries is proposed. It uses data assimilation and Ensemble Kalman filters in order to identify unknown parameters in a mathematical description of the cerebral network. The approach uses patient specific blood flow rates extracted from Magnetic Resonance Angiography and Magnetic Resonance Imaging. This construction is necessary as the simulation of blood flows in complex arterial networks, such as the circle of Willis, is not straightforward because hemodynamic parameters are unknown as well as the boundary conditions necessary to close this complex system with many outlets. For instance, in clinical cases, the values of Windkessel model parameters or the Young’s modulus and the thickness of the arteries are not available on per-patient cases. To make the approach computational efficient, a reduced order zero-dimensional compartment model is used for blood flow dynamics. Using this simplified model, the proof-of-concept study demonstrates how to use the EnKF as an optimization tool to find parameters and how to make the inverse hemodynamic problem tractable. The predicted blood flow rates in the internal carotid arteries and the predicted systolic and diastolic brachial blood pressures are found to be in good agreement with the clinical measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Alastruey, J., K. H. Parker, J. Peiró, S. M. Byrd, and S. J. Sherwin. Modelling the circle of willis to assess the effects of anatomical variations and occlusions on cerebral flows. J. Biomech. 40 (8): 1794–1805, 2007.

    Article  CAS  PubMed  Google Scholar 

  2. Bertoglio, C., P. Moireau, and J. -F. Gerbeau. Sequential parameter estimation for fluid-structure problems: application to hemodynamics. Int. J. Numer. Methods Biomed. Eng. 28 (4): 434–455, 2012.

    Article  Google Scholar 

  3. Blanco, P. J., R. A. Feijóo, et al. A 3d–1d-0d computational model for the entire cardiovascular system. Comput. Mech. 29: 5887–5911, 2010.

    Google Scholar 

  4. Boileau, E., P. Nithiarasu, P. J. Blanco, L. O. Müller, F. E. Fossan, L. R. Hellevik, W. P. Donders, W. Huberts, M. Willemet, and J. Alastruey. A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling. Int. J Numer. Methods Biomed. Eng. 31 (10), 2015. doi:10.1002/cnm.2732

    Article  Google Scholar 

  5. Caiazzo, A., F. Caforio, G. Montecinos, L. O. Muller, P. J. Blanco, and E. F. Toro. Assessment of reduced-order unscented kalman filter for parameter identification in one-dimensional blood flow models using experimental data. Int. J. Numer. Methods Biomed. Eng. 33 (8): e2843, 2016.

    Article  Google Scholar 

  6. Chabiniok, R., P. Moireau, P. -F. Lesault, A. Rahmouni, J. -F. Deux, and D. Chapelle. Estimation of tissue contractility from cardiac cine-mri using a biomechanical heart model. Biomech. Model. Mechanobiol. 11 (5): 609–630, 2012.

    Article  CAS  PubMed  Google Scholar 

  7. Chobanian, A. V., G. L. Bakris, H. R. Black, W. C. Cushman, L. A. Green, J. L. Izzo, D. W. Jones, B. J. Materson, S. Oparil, J. T. Wright, et al. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 42 (6): 1206–1252, 2003.

    Article  CAS  PubMed  Google Scholar 

  8. DeVault, K., P. A. Gremaud, V. Novak, M. S. Olufsen, G. Vernieres, and P. Zhao. Blood flow in the circle of willis: modeling and calibration. Multiscale Model. Simul. 7 (2): 888–909, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dumas, L., T. El Bouti, and D. Lucor. A robust and subject-specific hemodynamic model of the lower limb based on noninvasive arterial measurements. J. Biomech. Eng. 139 (1): 011002, 2017.

    Article  Google Scholar 

  10. Ellwein, L. M., H. T. Tran, C. Zapata, V. Novak, and M. S. Olufsen. Sensitivity analysis and model assessment: mathematical models for arterial blood flow and blood pressure. Cardiovasc. Eng. 8 (2): 94–108, 2008.

    Article  PubMed  Google Scholar 

  11. Ferns, S. P., J. J. Schneiders, M. Siebes, R. van Den Berg, E. T. van Bavel, and C. B. Majoie. Intracranial blood-flow velocity and pressure measurements using an intra-arterial dual-sensor guidewire. Am. J. Neuroradiol. 31 (2): 324–326, 2010.

    Article  CAS  PubMed  Google Scholar 

  12. Ford, M. D., N. Alperin, S. H. Lee, D. W. Holdsworth, and D. A. Steinman. Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiol. Meas. 26 (4): 477, 2005.

    Article  PubMed  Google Scholar 

  13. Gao, E., W. L. Young, E. Ornstein, J. Pile-Spellman, and M. Qiyuan. A theoretical model of cerebral hemodynamics: application to the study of arteriovenous malformations. J. Cereb. Blood Flow Metab. 17 (8): 905–918, 1997.

    Article  CAS  PubMed  Google Scholar 

  14. Gatehouse, P. D., M. P. Rolf, K. M. Bloch, M. J. Graves, P. J. Kilner, D. N. Firmin, and M. B. Hofman. A multi-center inter-manufacturer study of the temporal stability of phase-contrast velocity mapping background offset errors. J. Cardiovasc. Magn. Reson. 14 (1): 72, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hasan, D.M., B. J. Hindman, and M. M. Todd. Pressure changes within the sac of human cerebral aneurysms in response to artificially induced transient increases in systemic blood pressurenovelty and significance. Hypertension 66 (2): 324–331, 2015.

    Article  CAS  PubMed  Google Scholar 

  16. Hoksbergen, A. W. J., B. Fülesdi, D. A. Legemate, and L. Csiba. Collateral configuration of the circle of willis transcranial color-coded duplex ultrasonography and comparison with postmortem anatomy. Stroke 31 (6): 1346–1351, 2000.

    Article  CAS  PubMed  Google Scholar 

  17. Houtekamer, P. L., and H. L. Mitchell. Data assimilation using an ensemble kalman filter technique. Mon. Weather Rev. 126 (3): 796–811, 1998.

    Article  Google Scholar 

  18. Itu, L., P. Sharma, T. Passerini, A. Kamen, C. Suciu, and D. Comaniciu. A parameter estimation framework for patient-specific hemodynamic computations. J. Comput. Phys. 281: 316–333, 2015.

    Article  Google Scholar 

  19. Johnson, K., P. Sharma, and J. Oshinski. Coronary artery flow measurement using navigator echo gated phase contrast magnetic resonance velocity mapping at 3.0 T. J. Biomech. 41 (3): 595–602, 2008.

    Article  PubMed  Google Scholar 

  20. Klarhöfer, M., B. Csapo, C. Balassy, J. C. Szeles, and E. Moser. High-resolution blood flow velocity measurements in the human finger. Magn. Reson. Med. 45 (4): 716–719, 2001.

    Article  PubMed  Google Scholar 

  21. Lal, R., B. Mohammadi, and F. Nicoud. Data assimilation for identification of cardiovascular network characteristics. Int. J. Numer. Methods Biomed. Eng. 2016. DOI:10.1002/cnm.2824.

    Google Scholar 

  22. Liang, F., K. Fukasaku, H. Liu, and S. Takagi. A computational model study of the influence of the anatomy of the circle of willis on cerebral hyperperfusion following carotid artery surgery. Biomed. Eng. Online 10 (1): 84, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lombardi, D. Inverse problems in 1d hemodynamics on systemic networks: a sequential approach. Int. J. Numer. Methods Biomed. Eng. 30 (2): 160–179, 2014.

    Article  CAS  Google Scholar 

  24. Milišić, V. and A. Quarteroni. Analysis of lumped parameter models for blood flow simulations and their relation with 1d models. ESAIM 38 (4): 613–632, 2004.

    Article  Google Scholar 

  25. Mohan, D., V. Munteanu, T. Coman, and A. V. Ciurea. Genetic factors involves in intracranial aneurysms-actualities. J. Med. Life 8 (3): 336, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Moireau, P., C. Bertoglio, N. Xiao, C. A. Figueroa, C. A. Taylor, D. Chapelle, and J. -F. Gerbeau. Sequential identification of boundary support parameters in a fluid-structure vascular model using patient image data. Biomech. Model. Mechanobiol. 12 (3): 475–496, 2013.

    Article  CAS  PubMed  Google Scholar 

  27. Montecinos, G. I., L. O Müller, and E. F. Toro. Hyperbolic reformulation of a 1d viscoelastic blood flow model and ader finite volume schemes. J. Comput. Phys. 266: 101–123, 2014.

    Article  Google Scholar 

  28. Mulder G., A. C. B. Bogaerds, P. Rongen, and F. N. van de Vosse. The influence of contrast agent injection on physiological flow in the circle of willis. Med. Eng. Phys. 33 (2): 195–203, 2011.

    Article  CAS  PubMed  Google Scholar 

  29. Olufsen, M. S. Structured tree outflow condition for blood flow in larger systemic arteries. Am J Physiol. 276 (1): H257–H268, 1999.

    CAS  PubMed  Google Scholar 

  30. Olufsen, M. S., A. Nadim, et al. On deriving lumped models for blood flow and pressure in the systemic arteries. Math. Biosci. Eng. 1 (1): 61–80, 2004b.

    Article  PubMed  Google Scholar 

  31. Olufsen, M., H. Tran, and J. Ottesen. Modeling cerebral blood flow control during posture change from sitting to standing. Cardiovasc. Eng. 4 (1): 47–58, 2004a.

    Article  Google Scholar 

  32. Pant, S., C. Corsini, C. Baker, T. Y. Hsia, G. Pennati, I. E. Vignon-Clementel, and Modeling of Congenital Hearts Alliance (MOCHA) Investigators, et al. Data assimilation and modelling of patient-specific single-ventricle physiology with and without valve regurgitation. J. Biomech. 49 (11): 2162–2173, 2016.

  33. Pant, S., C. Corsini, C. Baker, T. -Y. Hsia, G. Pennati, and I. E. Vignon-Clementel. Inverse problems in reduced order models of cardiovascular haemodynamics: aspects of data assimilation and heart rate variability. J. R. Soc. Interface 14 (126): 20160513, 2017.

    Article  PubMed  Google Scholar 

  34. Pant, S., B. Fabrèges, J. -F. Gerbeau, and I. E. Vignon-Clementel. A methodological paradigm for patient-specific multi-scale cfd simulations: from clinical measurements to parameter estimates for individual analysis. Int. J Numer. Methods Biomed. Eng. 30 (12): 1614–1648, 2014.

    Article  CAS  Google Scholar 

  35. Pope, S. R., L. M. Ellwein, C. L. Zapata, V. Novak, C. T. Kelley, M. S. Olufsen. Estimation and identification of parameters in a lumped cerebrovascular model. Math. Biosci. Eng. 6 (1): 93–115, 2009.

    Article  PubMed  Google Scholar 

  36. Quarteroni, A., S. Ragni, and A. Veneziani. Coupling between lumped and distributed models for blood flow problems. Comput. Vis. Sci. 4 (2): 111–124, 2001.

    Article  Google Scholar 

  37. Reymond, P., F. Merenda, F. Perren, D. Rüfenacht, and N. Stergiopulos. Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circul. Physiol. 297 (1): H208–H222, 2009.

    Article  CAS  Google Scholar 

  38. Saito, M., Y. Ikenaga, M. Matsukawa, Y. Watanabe, T. Asada, and P. -Y. Lagrée. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results. J. Biomech. Eng. 133 (12): 121005, 2011.

    Article  PubMed  Google Scholar 

  39. Sanchez, M., D. Ambard, V. Costalat, S. Mendez, F. Jourdan, and F. Nicoud. Biomechanical assessment of the individual risk of rupture of cerebral aneurysms: a proof of concept. Ann. Biomed. Eng. 41 (1): 28–40, 2013.

    Article  CAS  PubMed  Google Scholar 

  40. Stergiopulos, N., D. F. Young, and T. R. Rogge. Computer simulation of arterial flow with applications to arterial and aortic stenoses. J. Biomech. 25 (12): 1477–1488, 1992.

    Article  CAS  PubMed  Google Scholar 

  41. Tang, Y., J. Ambandan, and D. Chen. Nonlinear measurement function in the ensemble kalman filter. Adv. Atmos. Sci. 31 (3): 551–558, 2014.

    Article  Google Scholar 

  42. Tang, C., Blatter, D. D., and Parker, D. L. Accuracy of phase-contrast flow measurements in the presence of partial-volume effects. J. Magn. Reson. Imaging 3 (2): 377–385, 1993.

    Article  CAS  PubMed  Google Scholar 

  43. Taylor, C. L., Z. Yuan, W. R. Selman, R. A. Ratcheson, and A. A. Rimm. Cerebral arterial aneurysm formation and rupture in 20,767 elderly patients: hypertension and other risk factors. J. Neurosurg. 83 (5): 812–819, 1995.

    Article  CAS  PubMed  Google Scholar 

  44. Urquiza, S. A., P. J. Blanco, M. J. Vénere, and R. A. Feijóo. Multidimensional modelling for the carotid artery blood flow. Comput. Methods Appl. Mech. Eng. 195 (33): 4002–4017, 2006.

    Article  Google Scholar 

  45. Ursino, M. and M. Giannessi. A model of cerebrovascular reactivity including the circle of willis and cortical anastomoses. Ann. Biomed. Eng. 38 (3): 955–974, 2010.

    Article  PubMed  Google Scholar 

  46. Westerhof, N., F. Bosman, C. J. De Vries, and A. Noordergraaf. Analog studies of the human systemic arterial tree. J. Biomech. 2 (2): 121–143, 1969.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors greatly thank Dr. J. Siguenza for acting as a volunteer in the acquisition procedure. Research done under the European Union Framework Programme Erasmus Mundus KITE (2013-2617 / 001-001 - EMA2).

Conflict of interest

The authors do not have any conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Lal.

Additional information

Associate Editor Ender A. Finol oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lal, R., Nicoud, F., Bars, E.L. et al. Non Invasive Blood Flow Features Estimation in Cerebral Arteries from Uncertain Medical Data. Ann Biomed Eng 45, 2574–2591 (2017). https://doi.org/10.1007/s10439-017-1904-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1904-7

Keywords

Navigation