Skip to main content
Log in

Nonlinear measurement function in the ensemble Kalman filter

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The optimal Kalman gain was analyzed in a rigorous statistical framework. Emphasis was placed on a comprehensive understanding and interpretation of the current algorithm, especially when the measurement function is nonlinear. It is argued that when the measurement function is nonlinear, the current ensemble Kalman Filter algorithm seems to contain implicit assumptions: the forecast of the measurement function is unbiased or the nonlinear measurement function is linearized. While the forecast of the model state is assumed to be unbiased, the two assumptions are actually equivalent.

On the above basis, we present two modified Kalman gain algorithms. Compared to the current Kalman gain algorithm, the modified ones remove the above assumptions, thereby leading to smaller estimated errors. This outcome was confirmed experimentally, in which we used the simple Lorenz 3-component model as the test-bed. It was found that in such a simple nonlinear dynamical system, the modified Kalman gain can perform better than the current one. However, the application of the modified schemes to realistic models involving nonlinear measurement functions needs to be further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambadan, J. T., and Y. M. Tang, 2011: Sigma-point particle filter for parameter estimation in a multiplicative noise environment. Journal of Advances in Modeling Earth Systems, 3, M12005, doi:10.1029/2011MS000065.

    Article  Google Scholar 

  • Anderson, J. L., 2001: An ensemble adjustment kalman filter for data assimilation. Mon. Wea. Rev., 129, 2884–2903.

    Article  Google Scholar 

  • Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus, 59A, 210–224.

    Article  Google Scholar 

  • Courtier, P., and Coauthors, 1998: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Quart. J. Roy. Meteor. Soc., 124, 1783–1807.

    Google Scholar 

  • Deng, Z., Y. Tang, D. Chen, and G. Wang 2012: A hybrid ensemble generation method for EnKF for Argo data assimilation. Atmos-Ocean, 50, 129–145.

    Article  Google Scholar 

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99(C5), 10 143–10 162.

    Article  Google Scholar 

  • Evensen, G., 1997: Advanced data assimilation for strongly nonlinear dynamics. Mon. Wea. Rev., 125, 1342–1354.

    Article  Google Scholar 

  • Evensen, G., 2003: The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dynamics, 53, 343–367.

    Article  Google Scholar 

  • Furrer, R., and T. Bengtsson, 2007: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. Journal of Multivariate Analysis, 98, 227–255.

    Article  Google Scholar 

  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble kalman filter for atmospheric data assimilation. Mon.Wea. Rev., 129, 123–137.

    Article  Google Scholar 

  • Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 2005: Atmospheric data assimilation with an Ensemble Kalman Filter: Results with real observations. Mon. Wea. Rev., 133, 604–620.

    Article  Google Scholar 

  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform kalman filter. Physica D, 230, 112–126.

    Article  Google Scholar 

  • Ito, K., and K. Q. Xiong, 2000: Gaussian filters for nonlinear filtering problems. IEEE Trans. Automat. Contr., 45(5), 910–927.

    Article  Google Scholar 

  • Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press, 375pp.

    Google Scholar 

  • Julier, S. J., J. K. Uhlmann, and H. F. Durrant-Whyte, 1995: A new approach for filtering nonlinear systems. Proc. of the 1995 American Control Conference, Seattle WA, USA, 1628–1632.

    Google Scholar 

  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82, 35–45.

    Article  Google Scholar 

  • Klinker, E., F. Rabier, G. Kelly, and J.-F. Mahfouf, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. III: Experimental results and diagnostics with operational configuration. Quart. J. Roy. Meteor. Soc., 126, 1191–1215.

    Article  Google Scholar 

  • Le Dimet, F. X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38A, 97–110.

    Article  Google Scholar 

  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141.

    Article  Google Scholar 

  • Miller, R. N., M. Ghil, and F. Gauthiez, 1994: Advanced data assimilation in strongly nonlinear dynamical systems. J. Atmos. Sci., 51, 1037–1056.

    Article  Google Scholar 

  • Simon, D., 2006: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley-Interscience, 318–320 pp.

    Book  Google Scholar 

  • Talagrand, O., and F. Bouttier, 2007: Data Assimilation in Meteorology and Oceanography. Academic Press, 304pp.

    Google Scholar 

  • Tang, Y. M., and J. Ambadan, 2009: Reply to comment on ”Sigmapoint Kalman Filters for the assimilation of strongly nonlinear systems”. J. Atmos. Sci., 66(11), 3501–3503.

    Article  Google Scholar 

  • Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131, 1485–1490.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youmin Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Y., Ambandan, J. & Chen, D. Nonlinear measurement function in the ensemble Kalman filter. Adv. Atmos. Sci. 31, 551–558 (2014). https://doi.org/10.1007/s00376-013-3117-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-3117-9

Key words

Navigation