Skip to main content
Log in

Mechanically Stable Intraspinal Microstimulation Implants for Human Translation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The goal of this study was to develop stable intraspinal microstimulation (ISMS) implants for use in humans to restore standing and walking after spinal cord injury. ISMS electrically activates locomotor networks within the lumbar region of the spinal cord. In animals, ISMS produced better functional outcomes than those obtained by other interventions, and recent efforts have focused on translating this approach to humans. This study used domestic pigs to: (1) quantify the movements and length changes of the implant region of the spinal cord during spine flexion and extension movements; and (2) measure the forces leading to the dislodgement of the ISMS electrodes. The displacement of the spinal cord implant region was 5.66 ± 0.57 mm relative to the implant fixation point on the spine. The overall length change of the spinal cord implant region was 5.64 ± 0.59 mm. The electrode dislodgment forces were 60.9 ± 35.5 mN. Based on these results, six different coil types were fabricated and their strain relief capacity assessed. When interposed between the electrodes and the stimulator, five coil types successfully prevented the dislodgement of the electrodes. The results of this study will guide the design of mechanically stable ISMS implants for ultimate human use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

FES:

Functional electrical stimulation

FBR:

Foreign body response

ISMS:

Intraspinal microstimulation

SCI:

Spinal cord injury

References

  1. Bamford, J. A., R. M. Lebel, K. Parseyan, and V. K. Mushahwar. The fabrication, implantation and stability of intraspinal microwire arrays in the spinal cord of cat and rat. Trans. Neural Syst. Rehabil. Eng. 2016.

  2. Bamford, J. A., C. T. Putman, and V. K. Mushahwar. Intraspinal microstimulation preferentially recruits fatigue-resistant muscle fibres and generates gradual force in rat. J. Physiol. 569:873–884, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bamford, J. A., K. G. Todd, and V. K. Mushahwar. The effects of intraspinal microstimulation on spinal cord tissue in the rat. Biomaterials 31:5552–5563, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Biran, R., D. C. Martin, and P. A. Tresco. The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull. J. Biomed. Mater. Res. A 82:169–178, 2007.

    Article  PubMed  Google Scholar 

  5. Busscher, I., J. J. W. Ploegmakers, G. J. Verkerke, and A. G. Veldhuizen. Comparative anatomical dimensions of the complete human and porcine spine. Eur. Spine J. 19:1104–1114, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cheng, C., J. Kmech, V. K. Mushahwar, and A. L. Elias. Development of surrogate spinal cords for the evaluation of electrode arrays used in intraspinal implants. IEEE Trans. Biomed. Eng. 60:1667–1676, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dennison, C. R., P. M. Wild, D. R. Wilson, and P. A. Cripton. A minimally invasive in-fiber Bragg grating sensor for intervertebral disc pressure measurements. Meas. Sci. Technol. 19:085201, 2008.

    Article  Google Scholar 

  8. Dennison, C. R., P. M. Wild, D. R. Wilson, and M. K. Gilbart. An in-fiber Bragg grating sensor for contact force and stress measurements in articular joints. Meas. Sci. Technol. 21:115803, 2010.

    Article  Google Scholar 

  9. Ersen, A., S. Elkabes, D. S. Freedman, and M. Sahin. Chronic tissue response to untethered microelectrode implants in the rat brain and spinal cord. J. Neural Eng. 12:016019, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hachmann, J. T., J. H. Jeong, P. J. Grahn, G. W. Mallory, L. Q. Evertz, A. J. Bieber, D. A. Lobel, K. E. Bennet, K. H. Lee, and J. L. Lujan. Large animal model for development of functional restoration paradigms using epidural and intraspinal stimulation. Plos One 8:e81443, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Harrison, D. E., R. Cailliet, D. D. Harrison, S. J. Troyanovich, and S. O. Harrison. A review of biomechanics of the central nervous system–part II: spinal cord strains from postural loads. J. Manip. Physiol. Ther. 22:322–332, 1999.

    Article  CAS  Google Scholar 

  12. Holinski, B. J. Restoring walking after spinal cord injury. 2013. <https://era.library.ualberta.ca/public/view/item/uuid:0e698e79-b16a-4519-baf7-552a49dda767/>.

  13. Kim, T., A. Branner, T. Gulati, and S. F. Giszter. Braided multi-electrode probes: mechanical compliance characteristics and recordings from spinal cords. J. Neural Eng. 10:045001, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kipke, D. R., R. J. Vetter, J. C. Williams, and J. F. Hetke. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 11:151–155, 2003.

    Article  Google Scholar 

  15. Krompecher, T. Experimental evaluation of rigor mortis V. Effect of various temperatures on the evolution of rigor mortis. Forensic Sci. Int. 17:19–26, 1981.

    Article  CAS  PubMed  Google Scholar 

  16. Lau, B., L. Guevremont, and V. K. Mushahwar. Strategies for generating prolonged functional standing using intramuscular stimulation or intraspinal microstimulation. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 15:273–285, 2007.

    Article  Google Scholar 

  17. Louis, R. Vertebroradicular and vertebromedullar dynamics. Anat. Clin. 3:1–11, 1981.

    Article  Google Scholar 

  18. McConnell, G. C., H. D. Rees, A. I. Levey, C. A. Gutekunst, R. E. Gross, and R. V. Bellamkonda. Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration. J. Neural Eng. 6:056003, 2009.

    Article  PubMed  Google Scholar 

  19. Moxon, K. A., S. C. Leiser, G. A. Gerhardt, K. A. Barbee, and J. K. Chapin. Ceramic-based multisite electrode arrays for chronic single-neuron recording. IEEE Trans. Biomed. Eng. 51:647–656, 2004.

    Article  PubMed  Google Scholar 

  20. Mushahwar, V. K., D. F. Collins, and A. Prochazka. Spinal cord microstimulation generates functional limb movements in chronically implanted cats. Exp. Neurol. 163:422–429, 2000.

    Article  CAS  PubMed  Google Scholar 

  21. Mushahwar, V. K., and K. W. Horch. Selective activation of muscle groups in the feline hindlimb through electrical microstimulation of the ventral lumbo-sacral spinal cord. IEEE Trans. Rehabil. Eng. 8:11–21, 2000.

    Article  CAS  PubMed  Google Scholar 

  22. Nashold, B. S., H. Friedman, J. F. Glenn, J. H. Grimes, W. F. Barry, and R. Avery. Electromicturition in paraplegia. Implantation of a spinal neuroprosthesis. Arch. Surg. Chic. Ill 1960 104:195–202, 1972.

    Google Scholar 

  23. Nashold, B. S., J. Grimes, H. Friedman, J. Semans, and R. Avery. Electrical stimulation of the conus medullaris in the paraplegic. A 5-year review. Appl. Neurophysiol. 40:192–207, 1977.

    PubMed  Google Scholar 

  24. Oxland, T. R., R. M. Lin, and M. M. Panjabi. Three-dimensional mechanical properties of the thoracolumbar junction. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 10:573–580, 1992.

    Article  CAS  Google Scholar 

  25. Ozawa, H., T. Matsumoto, T. Ohashi, M. Sato, and S. Kokubun. Mechanical properties and function of the spinal pia mater. J. Neurosurg. Spine 1:122–127, 2004.

    Article  PubMed  Google Scholar 

  26. Peckham, P. H., and J. S. Knutson. Functional electrical stimulation for neuromuscular applications. Annu. Rev. Biomed. Eng. 7:327–360, 2005.

    Article  CAS  PubMed  Google Scholar 

  27. Purves, D., G. J. Augustine, D. Fitzpatrick, L. C. Katz, A. S. LaMantia, J. O. McNamara, and S. M. Williams. The external anatomy of the spinal cord. In: Neuroscience. Sunderland: Sinauer Associates, 2001. <http://www.ncbi.nlm.nih.gov/books/NBK11160/>

  28. Rousche, P. J., and R. A. Normann. Chronic recording capability of the Utah intracortical electrode array in cat sensory cortex. J. Neurosci. Methods 82:1–15, 1998.

    Article  CAS  PubMed  Google Scholar 

  29. Saigal, R., C. Renzi, and V. K. Mushahwar. Intraspinal microstimulation generates functional movements after spinal-cord injury. IEEE Trans. Neural Syst. Rehabil. Eng. 12:430–440, 2004.

    Article  PubMed  Google Scholar 

  30. Sheng, S. R., X. Y. Wang, H. Z. Xu, G. Q. Zhu, and Y. F. Zhou. Anatomy of large animal spines and its comparison to the human spine: a systematic review. Eur. Spine J. 19:46–56, 2010.

    Article  PubMed  Google Scholar 

  31. Smit, T. H. The use of a quadruped as an in vivo model for the study of the spine—biomechanical considerations. Eur. Spine J. 11:137–144, 2002.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Smith, J. O. Physical Audio Signal Processing. New York: W3K Publishing, 2010.

    Google Scholar 

  33. Snow, S., S. C. Jacobsen, D. L. Wells, and K. W. Horch. Microfabricated cylindrical multielectrodes for neural stimulation. IEEE Trans. Biomed. Eng. 53:320–326, 2006.

    Article  PubMed  Google Scholar 

  34. Szentkuti, L., and J. Bruns. Motoneurons of M. semitendinosus in domestic and wild pigs. A horseradish peroxidase and cord-survey study. Anat. Embryol. (Berl.) 167:213–228, 1983.

    Article  CAS  Google Scholar 

  35. Ward, M. P., P. Rajdev, C. Ellison, and P. P. Irazoqui. Toward a comparison of microelectrodes for acute and chronic recordings. Brain Res. 1282:183–200, 2009.

    Article  CAS  PubMed  Google Scholar 

  36. White, A. A., and M. Panjabi. Clinical Biomechanics of the Spine. Philadelphia: Wolters Kluwer, p. 722, 1990.

    Google Scholar 

  37. WHO Spinal cord injury. <http://www.who.int/mediacentre/factsheets/fs384/en/>

  38. Wilke, H. J., J. Geppert, and A. Kienle. Biomechanical in vitro evaluation of the complete porcine spine in comparison with data of the human spine. Eur. Spine J. 20:1859–1868, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhong, Y., and R. V. Bellamkonda. Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. Brain Res. 1148:15–27, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Robert Butz for assistance with early measurement of electrode dislodgement forces, and Mr. Theodore Ng and Dr. Anastasia Elias for assistance in preparing surrogate spinal cords. Funding for this work was provided by the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council of Canada and Alberta Innovates – Health Solutions (AIHS). AT was supported by a Vanier Canada Graduate Scholarship and an AIHS Graduate Studentship. VKM was an Alberta Heritage Foundation for Medical Research Senior Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivian K. Mushahwar.

Additional information

Associate Editor Xiaoxiang Zheng oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toossi, A., Everaert, D.G., Azar, A. et al. Mechanically Stable Intraspinal Microstimulation Implants for Human Translation. Ann Biomed Eng 45, 681–694 (2017). https://doi.org/10.1007/s10439-016-1709-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1709-0

Keywords

Navigation