Skip to main content
Log in

Near Infrared Spectroscopic Mapping of Functional Properties of Equine Articular Cartilage

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

A Data Descriptor to this article was published on 30 August 2019

Abstract

Mechanical properties of articular cartilage are vital for normal joint function, which can be severely compromised by injuries. Quantitative characterization of cartilage injuries, and evaluation of cartilage stiffness and thickness by means of conventional arthroscopy is poorly reproducible or impossible. In this study, we demonstrate the potential of near infrared (NIR) spectroscopy for predicting and mapping the functional properties of equine articular cartilage at and around lesion sites. Lesion and non-lesion areas of interests (AI, N = 44) of equine joints (N = 5) were divided into grids and NIR spectra were acquired from all grid points (N = 869). Partial least squares (PLS) regression was used to investigate the correlation between the absorbance spectra and thickness, equilibrium modulus, dynamic modulus, and instantaneous modulus at the grid points of 41 AIs. Subsequently, the developed PLS models were validated with spectral data from the grid points of 3 independent AIs. Significant correlations were obtained between spectral data and cartilage thickness (R 2 = 70.3%, p < 0.0001), equilibrium modulus (R 2 = 67.8%, p < 0.0001), dynamic modulus (R 2 = 68.9%, p < 0.0001) and instantaneous modulus (R 2 = 41.8%, p < 0.0001). Relatively low errors were observed in the predicted thickness (5.9%) and instantaneous modulus (9.0%) maps. Thus, if well implemented, NIR spectroscopy could enable arthroscopic evaluation and mapping of cartilage functional properties at and around lesion sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Afara, I. O., I. Prasadam, R. Crawford, Y. Xiao, and A. Oloyede. Non-destructive evaluation of articular cartilage defects using near-infrared (NIR) spectroscopy in osteoarthritic rat models and its direct relation to Mankin score. Osteoarthritis Cartilage 20:1367–1373, 2012.

    Article  CAS  PubMed  Google Scholar 

  2. Afara, I. O., I. Prasadam, R. Crawford, Y. Xiao, and A. Oloyede. Near infrared (NIR) absorption spectra correlates with subchondral bone micro-CT parameters in osteoarthritic rat models. Bone 53:350–357, 2013.

    Article  PubMed  Google Scholar 

  3. Afara, I. O., S. Singh, and A. Oloyede. Application of near infrared (NIR) spectroscopy for determining the thickness of articular cartilage. Med. Eng. Phys. 35:88–95, 2013.

    Article  CAS  PubMed  Google Scholar 

  4. Afara, I. O., I. Prasadam, H. Moody, R. Crawford, Y. Xiao, and A. Oloyede. Near infrared spectroscopy for rapid determination of Mankin score components: a potential tool for quantitative characterization of articular cartilage at surgery. Arthroscopy 30:1146–1155, 2014.

    Article  PubMed  Google Scholar 

  5. Afara, I. O., M. Hauta-Kasari, J. S. Jurvelin, A. Oloyede, and J. Töyräs. Optical absorption spectra of human articular cartilage correlate with biomechanical properties, histological score and biochemical composition. Physiol. Meas. 36:1913–1928, 2015.

    Article  PubMed  Google Scholar 

  6. Afara, I. O., H. Moody, S. Singh, I. Prasadam, and A. Oloyede. Spatial mapping of proteoglycan content in articular cartilage using near-infrared (NIR) spectroscopy. Biomed. Opt. Express 6:144–154, 2015.

    Article  PubMed  Google Scholar 

  7. Ala-Myllymäki, J., J. T. J. Honkanen, J. Töyräs, and I. O. Afara. Optical spectroscopic determination of human meniscus composition. J. Orthop. Res. 18:109–115, 2015.

    Google Scholar 

  8. Amin, S., M. P. LaValley, A. Guermazi, M. Grigoryan, D. J. Hunter, M. Clancy, J. Niu, D. R. Gale, and D. T. Felson. The relationship between cartilage loss on magnetic resonance imaging and radiographic progression in men and women with knee osteoarthritis. Arthritis Rheum. 52:3152–3159, 2005.

    Article  PubMed  Google Scholar 

  9. Baykal, D., O. Irrechukwu, P.-C. Lin, K. Fritton, R. G. Spencer, and N. Pleshko. Nondestructive assessment of engineered cartilage constructs using near-infrared spectroscopy. Appl. Spectrosc. 64:1160–1166, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brittberg, M., and C. S. Winalski. Evaluation of cartilage injuries and repair. J. Bone Joint Surg. Am. 85-A(Suppl 2):58–69, 2003.

    Google Scholar 

  11. Brommer, H., M. S. Laasanen, P. A. J. Brama, P. R. van Weeren, H. J. Helminen, and J. S. Jurvelin. In situ and ex vivo evaluation of an arthroscopic indentation instrument to estimate the health status of articular cartilage in the equine metacarpophalangeal joint. Vet. Surg. 35:259–266, 2006.

    Article  PubMed  Google Scholar 

  12. Buckwalter, J. A., and T. D. Brown. Joint injury, repair, and remodeling: roles in post-traumatic osteoarthritis. Clin. Orthop. Relat. Res. 423:7–16, 2004.

    Article  Google Scholar 

  13. Buckwalter, J. A., and H. J. Mankin. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr. Course Lect. 47:487–504, 1998.

    CAS  PubMed  Google Scholar 

  14. Burns, D. A., and E. W. Ciurczak. Handbook of Near-Infrared Analysis (3rd ed.). Boca Raton: CRC Press, 2009.

    Google Scholar 

  15. Chu, C. R., D. Lin, J. L. Geisler, C. T. Chu, F. H. Fu, and Y. Pan. Arthroscopic microscopy of articular cartilage using optical coherence tomography. Am. J. Sports Med. 32:699–709, 2004.

    Article  PubMed  Google Scholar 

  16. Cohen, Z. A., D. M. McCarthy, S. D. Kwak, P. Legrand, F. Fogarasi, E. J. Ciaccio, and G. A. Ateshian. Knee cartilage topography, thickness, and contact areas from MRI: in vitro calibration and in vivo measurements. Osteoarthristis Cartilage 7:95–109, 1999.

    Article  CAS  Google Scholar 

  17. De Souza, R. A., M. Xavier, N. M. Mangueira, A. P. Santos, A. L. B. Pinheiro, A. B. Villaverde, and L. Silveira. Raman spectroscopy detection of molecular changes associated with two experimental models of osteoarthritis in rats. Lasers Med. Sci. 29:797–804, 2014.

    Article  PubMed  Google Scholar 

  18. Ebert, D. W. Articular Cartilage Optical Properties in the Spectral Range 300–850 nm. J. Biomed. Opt. 3:326, 1998.

    Article  CAS  PubMed  Google Scholar 

  19. Glüer, C. C., G. Blake, Y. Lu, B. A. Blunt, M. Jergas, and H. K. Genant. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos. Int. 5:262–270, 1995.

    Article  PubMed  Google Scholar 

  20. Hanifi, A., X. Bi, X. Yang, B. Kavukcuoglu, P. C. Lin, E. DiCarlo, R. G. Spencer, M. P. G. Bostrom, and N. Pleshko. Infrared fiber optic probe evaluation of degenerative cartilage correlates to histological grading. Am. J. Sports Med. 40:2853–2861, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Haq, I., E. Murphy, and J. Dacre. Osteoarthritis. Postgrad. Med. J. 79:377–383, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hattori, K., K. Ikeuchi, Y. Morita, and Y. Takakura. Quantitative ultrasonic assessment for detecting microscopic cartilage damage in osteoarthritis. Arthritis Res. Ther. 7:R38–R46, 2005.

    Article  PubMed  Google Scholar 

  23. Hayes, W. C., L. M. Keer, G. Herrmann, and L. F. Mockros. A mathematical analysis for indentation tests of articular cartilage. J. Biomech. 5:541–551, 1972.

    Article  CAS  PubMed  Google Scholar 

  24. Hunziker, E. B. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 10:432–463, 2002.

    Article  CAS  PubMed  Google Scholar 

  25. Huttu, M. R. J., J. Puhakka, J. T. A. Mäkelä, Y. Takakubo, V. Tiitu, S. Saarakkala, Y. T. Konttinen, I. Kiviranta, and R. K. Korhonen. Cell-tissue interactions in osteoarthritic human hip joint articular cartilage. Connect. Tissue Res. 55:282–291, 2014.

    Article  CAS  PubMed  Google Scholar 

  26. Korhonen, R., M. Laasanen, J. Töyräs, J. Rieppo, J. Hirvonen, H. Helminen, and J. Jurvelin. Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J. Biomech. 35:903–909, 2002.

    Article  CAS  PubMed  Google Scholar 

  27. Korhonen, R. K., M. S. Laasanen, J. Töyräs, R. Lappalainen, H. J. Helminen, and J. S. Jurvelin. Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J. Biomech. 36:1373–1379, 2003.

    Article  PubMed  Google Scholar 

  28. Lai, W. M., J. S. Hou, and V. C. Mow. A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113:245–258, 1991.

    Article  CAS  PubMed  Google Scholar 

  29. Lee, H., W. G. Kirkland, R. N. Whitmore, K. M. Theis, H. E. Young, A. J. Richardson, R. L. Jackson, and R. R. Hanson. Comparison of equine articular cartilage thickness in various joints. Connect. Tissue Res. 55:339–347, 2014.

    Article  CAS  PubMed  Google Scholar 

  30. Lyyra, T., J. Jurvelin, P. Pitkänen, U. Väätäinen, and I. Kiviranta. Indentation instrument for the measurement of cartilage stiffness under arthroscopic control. Med. Eng. Phys. 17:395–399, 1995.

    Article  CAS  PubMed  Google Scholar 

  31. Mäkelä, J. T. A., Z. S. Rezaeian, S. Mikkonen, R. Madden, S.-K. Han, J. S. Jurvelin, W. Herzog, and R. K. Korhonen. Site-dependent changes in structure and function of lapine articular cartilage 4 weeks after anterior cruciate ligament transection. Osteoarthritis Cartilage 22:869–878, 2014.

    Article  PubMed  Google Scholar 

  32. McGoverin, C. M., A. Hanifi, U. P. Palukuru, F. Yousefi, P. B Glenn, M. Shockley, R. G. Spencer, and N. Pleshko. Non-destructive assessment of engineered cartilage composition by near infrared spectroscopy. Ann. Biomed. Eng. 44(3):680–692, 2016.

    Article  PubMed  Google Scholar 

  33. McGoverin, C. M., K. Lewis, X. Yang, M. P. G. Bostrom, and N. Pleshko. The Contribution of Bone and Cartilage to the Near-Infrared Spectrum of Osteochondral Tissue. Appl. Spectrosc. 68:1168–1175, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mow, V. C., A. Ratcliffe, and A. R. Poole. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13:67–97, 1992.

    Article  CAS  PubMed  Google Scholar 

  35. Padalkar, M. V., and N. Pleshko. Wavelength-dependent penetration depth of near infrared radiation into cartilage. Analyst 140:2093–2100, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Padalkar, M. V., R. G. Spencer, and N. Pleshko. Near infrared spectroscopic evaluation of water in hyaline cartilage. Ann. Biomed. Eng. 41:2426–2436, 2013.

    Article  CAS  PubMed  Google Scholar 

  37. Palukuru, U. P., C. M. McGoverin, and N. Pleshko. Assessment of hyaline cartilage matrix composition using near infrared spectroscopy. Matrix Biol. 38:3–11, 2014.

    Article  CAS  PubMed  Google Scholar 

  38. Reinikainen, S.-P., and A. Höskuldsson. Multivariate statistical analysis of a multi-step industrial processes. Anal. Chim. Acta 595:248–256, 2007.

    Article  CAS  PubMed  Google Scholar 

  39. Rieppo, L., S. Saarakkala, T. Närhi, H. J. Helminen, J. S. Jurvelin, and J. Rieppo. Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage. Osteoarthristis Cartilage 20:451–459, 2012.

    Article  CAS  Google Scholar 

  40. Saarakkala, S., M. S. Laasanen, J. S. Jurvelin, and J. Töyräs. Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone. Phys. Med. Biol. 51:5333–5346, 2006.

    Article  PubMed  Google Scholar 

  41. Spahn, G., H. Plettenberg, E. Kahl, H. M. Klinger, T. Mückley, and G. O. Hofmann. Near-infrared (NIR) spectroscopy. A new method for arthroscopic evaluation of low grade degenerated cartilage lesions. Results of a pilot study. BMC Musculoskelet. Disord. 8:47, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Spahn, G., H. M. Klinger, and G. O. Hofmann. How valid is the arthroscopic diagnosis of cartilage lesions? Results of an opinion survey among highly experienced arthroscopic surgeons. Arch. Orthop. Trauma Surg. 129:1117–1121, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Spahn, G., H. M. Klinger, M. Baums, U. Pinkepank, and G. O. Hofmann. Reliability in arthroscopic grading of cartilage lesions: results of a prospective blinded study for evaluation of inter-observer reliability. Arch. Orthop. Trauma Surg. 131:377–381, 2011.

    Article  PubMed  Google Scholar 

  44. Spahn, G., G. Felmet, and G. O. Hofmann. Traumatic and degenerative cartilage lesions: arthroscopic differentiation using near-infrared spectroscopy (NIRS). Arch. Orthop. Trauma Surg. 133:997–1002, 2013.

    Article  PubMed  Google Scholar 

  45. Takahashi, Y., N. Sugano, M. Takao, T. Sakai, T. Nishii, and G. Pezzotti. Raman spectroscopy investigation of load-assisted microstructural alterations in human knee cartilage: preliminary study into diagnostic potential for osteoarthritis. J. Mech. Behav. Biomed. Mater. 31:77–85, 2014.

    Article  PubMed  Google Scholar 

  46. Te Moller, N. C. R., H. Brommer, J. Liukkonen, T. Virén, M. Timonen, P. H. Puhakka, J. S. Jurvelin, P. R. van Weeren, and J. Töyräs. Arthroscopic optical coherence tomography provides detailed information on articular cartilage lesions in horses. Vet. J. 197:589–595, 2013.

    Article  Google Scholar 

  47. Töyräs, J., J. Rieppo, M. T. Nieminen, H. J. Helminen, and J. S. Jurvelin. Characterization of enzymatically induced degradation of articular cartilage using high frequency ultrasound. Phys. Med. Biol. 44:2723–2733, 1999.

    Article  PubMed  Google Scholar 

  48. Von Engelhardt, L. V., M. Lahner, A. Klussmann, B. Bouillon, A. Dàvid, P. Haage, and T. K. Lichtinger. Arthroscopy vs. MRI for a detailed assessment of cartilage disease in osteoarthritis: diagnostic value of MRI in clinical practice. BMC Musculoskelet. Disord. 11:75, 2010.

    Article  Google Scholar 

  49. Wold, S., M. Sjöström, and L. Eriksson. PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58:109–130, 2001.

    Article  CAS  Google Scholar 

  50. Yin, J., and Y. Xia. Proteoglycan concentrations in healthy and diseased articular cartilage by Fourier transform infrared imaging and principal component regression. Spectrochim. Acta A Mol. Biomol. Spectrosc. 133:825–830, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr Jouni Hiltunen, Dr Juha Toivonen and Prof Adekunle Oloyede for assistance with the optical instrumentation. This study was funded by the Academy of Finland (project 267551, University of Eastern Finland) and Kuopio University Hospital (VTR projects 5041750 and 5041744, PY210 Clinical Neurophysiology). Dr Afara would like to acknowledge the Finnish Cultural Foundation (00160079).

Author Contributions

J.K. Sarin was involved in equine ex vivo study, data acquisition, analyses and was the main writer of the manuscript. M. Amissah contributed in the reference measurements. H. Brommer contributed in equine ex vivo study, equine arthroscopies. D. Argüelles contributed in equine ex vivo study, equine arthroscopies. J. Töyräs contributed in the study conception, equine ex vivo study, and interpretation of data. I.O. Afara contributed in the study conception, equine ex vivo study, data analyses and interpretation. All authors contributed in the preparation and approval of the final submitted manuscript.

Conflict of Interest

The authors have no conflicts of interest in the execution of this study and preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaakko K. Sarin.

Additional information

Associate Editor Kent Leach oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarin, J.K., Amissah, M., Brommer, H. et al. Near Infrared Spectroscopic Mapping of Functional Properties of Equine Articular Cartilage. Ann Biomed Eng 44, 3335–3345 (2016). https://doi.org/10.1007/s10439-016-1659-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1659-6

Keywords

Navigation