Skip to main content
Log in

Nondestructive Assessment of Engineered Cartilage Composition by Near Infrared Spectroscopy

  • Nondestructive Characterization of Biomaterials for Tissue Engineering and Drug Delivery
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Tissue engineering presents a strategy to overcome the limitations of current tissue healing methods. Scaffolds, cells, external growth factors and mechanical input are combined in an effort to obtain constructs with properties that mimic native tissues. However, engineered constructs developed using similar culture environments can have very different matrix composition and biomechanical properties. Accordingly, a nondestructive technique to assess constructs during development such that appropriate compositional endpoints can be defined is desirable. Near infrared spectroscopy (NIRS) analysis is a modality being investigated to address the challenges associated with current evaluation techniques, which includes nondestructive compositional assessment. In the present study, cartilage tissue constructs were grown using chondrocytes seeded onto polyglycolic acid (PGA) scaffolds in similar environments in three separate tissue culture experiments and monitored using NIRS. Multivariate partial least squares (PLS) analysis models of NIR spectra were calculated and used to predict tissue composition, with biochemical assay information used as the reference data. Results showed that for combined data from all tissue culture experiments, PLS models were able to assess composition with significant correlations to reference values, including engineered cartilage water (at 5200 cm−1, R = 0.68, p = 0.03), proteoglycan (at 4310 cm−1, R = 0.82, p = 0.007), and collagen (at 4610 cm−1, R = 0.84, p = 0.005). In addition, degradation of PGA was monitored using specific NIRS frequencies. These results demonstrate that NIR spectroscopy combined with multivariate analysis provides a nondestructive modality to assess engineered cartilage, which could provide information to determine the optimal time for tissue harvest for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Afara, I., I. Prasadam, R. Crawford, Y. Xiao, and A. Oloyede. Non-destructive evaluation of articular cartilage defects using near-infrared (NIR) spectroscopy in osteoarthritic rat models and its direct relation to Mankin score. Osteoarthr. Cartil. 20:1367–1373, 2012.

    Article  CAS  PubMed  Google Scholar 

  2. Afara, I., S. Singh, and A. Oloyede. Application of near infrared (NIR) spectroscopy for determining the thickness of articular cartilage. Med. Eng. Phys. 35:88–95, 2013.

    Article  CAS  PubMed  Google Scholar 

  3. Appel, A. A., M. A. Anastasio, J. C. Larson, and E. M. Brey. Imaging challenges in biomaterials and tissue engineering. Biomaterials 34:6615–6630, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baykal, D., O. Irrechukwu, P. C. Lin, K. Fritton, R. G. Spencer, and N. Pleshko. Nondestructive assessment of engineered cartilage constructs using near-infrared spectroscopy. Appl. Spectrosc. 64:1160–1166, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boskey, A., and N. P. Camacho. FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28:2465–2478, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brown, C. P., C. Jayadev, S. Glyn-Jones, A. J. Carr, D. W. Murray, A. J. Price, and H. S. Gill. Characterization of early stage cartilage degradation using diffuse reflectance near infrared spectroscopy. Phys. Med. Biol. 56:2299–2307, 2011.

    Article  CAS  PubMed  Google Scholar 

  7. Bursac, P. M., L. E. Freed, R. J. Biron, and G. Vunjak-Novakovic. Mass transfer studies of tissue engineered cartilage. Tissue Eng. 2:141–150, 1996.

    Article  CAS  PubMed  Google Scholar 

  8. Camacho, N. P., P. Carroll, and C. L. Raggio. Fourier transform infrared imaging spectroscopy (FT-IRIS) of mineralization in bisphosphonate-treated oim/oim mice. Calcif. Tissue Int. 72:604–609, 2003.

    Article  CAS  PubMed  Google Scholar 

  9. Danisovic, L., I. Varga, R. Zamborsky, and D. Bohmer. The tissue engineering of articular cartilage: cells, scaffolds and stimulating factors. Exp. Biol. Med. (Maywood). 237:10–17, 2012.

    Article  CAS  PubMed  Google Scholar 

  10. Delwiche, S. R., and J. B. Reeves, 3rd. A graphical method to evaluate spectral preprocessing in multivariate regression calibrations: example with Savitzky-Golay filters and partial least squares regression. Appl. Spectrosc. 64:73–82, 2010.

    Article  CAS  PubMed  Google Scholar 

  11. Elder, B. D., and K. A. Athanasiou. Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration. Tissue Eng Part B 15:43–53, 2009.

    Article  CAS  Google Scholar 

  12. Erickson, I. E., A. H. Huang, C. Chung, R. T. Li, J. A. Burdick, and R. L. Mauck. Differential maturation and structure-function relationships in mesenchymal stem cell- and chondrocyte-seeded hydrogels. Tissue Eng. Part A 15:1041–1052, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Esbensen, K. H. Multivariate Data Analysis-in Practice: An Introduction to Multivariate Data Analysis and Experimental Design. Woodbridge: CAMO Software, 2010.

    Google Scholar 

  14. Farndale, R. W., D. J. Buttle, and A. J. Barrett. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim. Biophys. Acta 883:173–177, 1986.

    Article  CAS  PubMed  Google Scholar 

  15. Farr, J., and J. Q. Yao. Chondral defect repair with particulated juvenile cartilage allograft. Cartilage. 2:346–353, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fisher, M. B., E. A. Henning, N. B. Soegaard, G. R. Dodge, D. R. Steinberg, and R. L. Mauck. Maximizing cartilage formation and integration via a trajectory-based tissue engineering approach. Biomaterials 35:2140–2148, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Freed, L. E., G. C. Engelmayr, Jr, J. T. Borenstein, F. T. Moutos, and F. Guilak. Advanced material strategies for tissue engineering scaffolds. Adv. Mater. 21:3410–3418, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Georgakoudi, I., W. L. Rice, M. Hronik-Tupaj, and D. L. Kaplan. Optical spectroscopy and imaging for the noninvasive evaluation of engineered tissues. Tissue Eng Part B 14:321–340, 2008.

    Article  Google Scholar 

  19. Getgood, A., R. Brooks, L. Fortier, and N. Rushton. Articular cartilage tissue engineering: today’s research, tomorrow’s practice? J. Bone Joint Surg. 91:565–576, 2009.

    Article  CAS  Google Scholar 

  20. Gill, T. J., P. D. Asnis, and E. M. Berkson. The treatment of articular cartilage defects using the microfracture technique. J. Orthop. Sports Phys. Ther. 36:728–738, 2006.

    Article  PubMed  Google Scholar 

  21. Goldring, M. B. Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best Pract. Res. Clin. Rheumatol. 20:1003–1025, 2006.

    Article  CAS  PubMed  Google Scholar 

  22. Grimaud, E., D. Heymann, and F. Redini. Recent advances in TGF-beta effects on chondrocyte metabolism. Potential therapeutic roles of TGF-beta in cartilage disorders. Cytokine Growth Factor Rev. 13:241–257, 2002.

    Article  CAS  PubMed  Google Scholar 

  23. Grunder, T., C. Gaissmaier, J. Fritz, R. Stoop, P. Hortschansky, J. Mollenhauer, and W. K. Aicher. Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthr. Cartil. 12:559–567, 2004.

    Article  PubMed  Google Scholar 

  24. Gurjarpadhye, A. A., M. R. DeWitt, Y. Xu, G. Wang, M. N. Rylander, and C. G. Rylander. Dynamic assessment of the endothelialization of tissue-engineered blood vessels using an optical coherence tomography catheter-based fluorescence imaging system. Tissue Eng Part C 21:758–766, 2015.

    Article  CAS  Google Scholar 

  25. Gurjarpadhye, A. A., B. M. Whited, A. Sampson, G. Niu, K. S. Sharma, W. C. Vogt, G. Wang, Y. Xu, S. Soker, M. N. Rylander, and C. G. Rylander. Imaging and characterization of bioengineered blood vessels within a bioreactor using free-space and catheter-based OCT. Lasers Surg. Med. 45:391–400, 2013.

    Article  PubMed  Google Scholar 

  26. Hanh, B. D., R. H. Neubert, S. Wartewig, A. Christ, and C. Hentzsch. Drug penetration as studied by noninvasive methods: fourier transform infrared-attenuated total reflection, fourier transform infrared, and ultraviolet photoacoustic spectroscopy. J. Pharm. Sci. 89:1106–1113, 2000.

    Article  CAS  PubMed  Google Scholar 

  27. Hanifi, A., X. H. Bi, X. Yang, B. Kavukcuoglu, P. C. Lin, E. DiCarlo, R. G. Spencer, M. P. G. Bostrom, and N. Pleshko. Infrared fiber optic probe evaluation of degenerative cartilage correlates to histological grading. Am. J. Sports Med. 40:2853–2861, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hanifi, A., H. McCarthy, S. Roberts, and N. Pleshko. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues. PLoS ONE 8:e64822, 2012.

    Article  Google Scholar 

  29. Hanifi, A., J. B. Richardson, J. H. Kuiper, S. Roberts, and N. Pleshko. Clinical outcome of autologous chondrocyte implantation is correlated with infrared spectroscopic imaging-derived parameters. Osteoarthr. Cartil. 20:988–996, 2013.

    Article  Google Scholar 

  30. Hoemann, C. D., J. Sun, V. Chrzanowski, and M. D. Buschmann. A multivalent assay to detect glycosaminoglycan, protein, collagen, RNA, and DNA content in milligram samples of cartilage or hydrogel-based repair cartilage. Anal. Biochem. 300:1–10, 2002.

    Article  CAS  PubMed  Google Scholar 

  31. Irrechukwu, O. N., P. C. Lin, K. Fritton, S. Doty, N. Pleshko, and R. G. Spencer. Magnetic resonance studies of macromolecular content in engineered cartilage treated with pulsed low-intensity ultrasound. Tissue Eng. Part A 17:407–415, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kim, M., X. Bi, W. E. Horton, R. G. Spencer, and N. P. Camacho. Fourier transform infrared imaging spectroscopic analysis of tissue engineered cartilage: histologic and biochemical correlations. J. Biomed. Opt. 10:031105, 2005.

    Article  PubMed  Google Scholar 

  33. Kim, G., M. Okumura, D. Bosnakovski, T. Ishiguro, C. H. Park, T. Kadosawa, and T. Fujinaga. Effects of ascorbic acid on proliferation and biological properties of bovine chondrocytes in alginate beads. Jpn. J. Vet. Res. 51:83–94, 2003.

    PubMed  Google Scholar 

  34. Lawrence, R. C., C. G. Helmick, F. C. Arnett, R. A. Deyo, D. T. Felson, E. H. Giannini, S. P. Heyse, R. Hirsch, M. C. Hochberg, G. G. Hunder, M. H. Liang, S. R. Pillemer, V. D. Steen, and F. Wolfe. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum. 41:778–799, 1998.

    Article  CAS  PubMed  Google Scholar 

  35. Li, L. P., M. D. Buschmann, and A. Shirazi-Adl. Strain-rate dependent stiffness of articular cartilage in unconfined compression. J. Biomech. Eng. 125:161–168, 2003.

    Article  CAS  PubMed  Google Scholar 

  36. Li, G., M. Thomson, E. Dicarlo, X. Yang, B. Nestor, M. P. Bostrom, and N. P. Camacho. A chemometric analysis for evaluation of early-stage cartilage degradation by infrared fiber-optic probe spectroscopy. Appl. Spectrosc. 59:1527–1533, 2005.

    Article  CAS  PubMed  Google Scholar 

  37. Mahmoudifar, N., and P. M. Doran. Chondrogenesis and cartilage tissue engineering: the longer road to technology development. Trends Biotechnol. 30:166–176, 2012.

    Article  CAS  PubMed  Google Scholar 

  38. Makris, E. A., D. J. Responte, N. K. Paschos, J. C. Hu, and K. A. Athanasiou. Developing functional musculoskeletal tissues through hypoxia and lysyl oxidase-induced collagen cross-linking. Proc. Natl. Acad. Sci. USA. 111:E4832–E4841, 2013.

    Article  Google Scholar 

  39. McGoverin, C. M., K. Lewis, X. Yang, M. P. G. Bostrom, and N. Pleshko. The contribution of bone and cartilage to the near-infrared spectrum of osteochondral tissue. Appl. Spectrosc. 68:1168–1175, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Meyer, E. G., C. T. Buckley, A. J. Steward, and D. J. Kelly. The effect of cyclic hydrostatic pressure on the functional development of cartilaginous tissues engineered using bone marrow derived mesenchymal stem cells. J. Mech. Behav. Biomed. Mater. 4:1257–1265, 2011.

    Article  CAS  PubMed  Google Scholar 

  41. Mithoefer, K., R. J. Williams, 3rd, R. F. Warren, H. G. Potter, C. R. Spock, E. C. Jones, T. L. Wickiewicz, and R. G. Marx. The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J. Bone Joint Surg. Am. 87:1911–1920, 2005.

    Article  PubMed  Google Scholar 

  42. Muller, B., F. Beckmann, M. Huser, F. Maspero, G. Szekely, K. Ruffieux, P. Thurner, and E. Wintermantel. Non-destructive three-dimensional evaluation of a polymer sponge by micro-tomography using synchrotron radiation. Biomol. Eng. 19:73–78, 2002.

    Article  CAS  PubMed  Google Scholar 

  43. Obradovic, B., I. Martin, R. F. Padera, S. Treppo, L. E. Freed, and G. Vunjak-Novakovic. Integration of engineered cartilage. J. Orthop. Res. 19:1089–1097, 2001.

    Article  CAS  PubMed  Google Scholar 

  44. O’Brien, M. P., M. Penmatsa, U. Palukuru, P. West, X. Yang, M. P. Bostrom, T. Freeman, and N. Pleshko. Monitoring the progression of spontaneous articular cartilage healing with infrared spectroscopy. Cartilage. 6:174–184, 2015.

    Article  PubMed  Google Scholar 

  45. Padalkar, M. V., and N. Pleshko. Wavelength-dependent penetration depth of near infrared radiation into cartilage. Analyst. 140:2093–2100, 2015.

    Article  CAS  PubMed  Google Scholar 

  46. Padalkar, M. V., R. G. Spencer, and N. Pleshko. Near infrared spectroscopic evaluation of water in hyaline cartilage. Ann. Biomed. Eng. 41:2426–2436, 2013.

    Article  CAS  PubMed  Google Scholar 

  47. Palukuru, U. P., C. M. McGoverin, and N. Pleshko. Assessment of hyaline cartilage matrix composition using near infrared spectroscopy. Matrix Biol. 38:3–11, 2014.

    Article  CAS  PubMed  Google Scholar 

  48. Potter, H. G., B. R. Black, and R. Chong le. New techniques in articular cartilage imaging. Clin. Sports Med. 28:77–94, 2009.

    Article  PubMed  Google Scholar 

  49. Reiter, D. A., O. Irrechukwu, P. C. Lin, S. Moghadam, S. Von Thaer, N. Pleshko, and R. G. Spencer. Improved MR-based characterization of engineered cartilage using multiexponential T2 relaxation and multivariate analysis. NMR Biomed. 25:476–488, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rieppo, L., S. Saarakkala, T. Narhi, H. J. Helminen, J. S. Jurvelin, and J. Rieppo. Application of second derivative spectroscopy for increasing molecular specificity of Fourier transform infrared spectroscopic imaging of articular cartilage. Osteoarthr. Cartil. 20:451–459, 2012.

    Article  CAS  PubMed  Google Scholar 

  51. Rinnan, A., F. van den Berg, and S. B. Engelsen. Review of the most common pre-processing techniques for near-infrared spectra. Trac Trends Anal. Chem. 28:1201–1222, 2009.

    Article  CAS  Google Scholar 

  52. Sandell, L. J., and J. C. Daniel. Effects of ascorbic acid on collagen mRNA levels in short term chondrocyte cultures. Connect. Tissue Res. 17:11–22, 1988.

    Article  CAS  PubMed  Google Scholar 

  53. Saris, D. B., J. Vanlauwe, J. Victor, M. Haspl, M. Bohnsack, Y. Fortems, B. Vandekerckhove, K. F. Almqvist, T. Claes, F. Handelberg, K. Lagae, J. van der Bauwhede, H. Vandenneucker, K. G. Yang, M. Jelic, R. Verdonk, N. Veulemans, J. Bellemans, and F. P. Luyten. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am. J. Sports Med. 36:235–246, 2008.

    Article  PubMed  Google Scholar 

  54. Shahin, K., and P. M. Doran. Tissue engineering of cartilage using a mechanobioreactor exerting simultaneous mechanical shear and compression to simulate the rolling action of articular joints. Biotechnol. Bioeng. 109:1060–1073, 2011.

    Article  PubMed  Google Scholar 

  55. Shakibaei, M., C. Csaki, and A. Mobasheri. Diverse roles of integrin receptors in articular cartilage. Adv. Anat. Embryol. Cell Biol. 197:1–60, 2008.

    Article  CAS  PubMed  Google Scholar 

  56. Shockley, M., C. McGoverin, U. Palukuru, P. Glenn, R. Spencer, and N. Pleshko. Near infrared spectroscopy as a method for non-destructive monitoring of engineered cartilage growth. 39th Annual Northeast Bioengineering Conference, 2013, pp. 51–52.

  57. Siebelt, M., H. C. Groen, S. J. Koelewijn, E. de Blois, M. Sandker, J. H. Waarsing, C. Muller, G. J. van Osch, M. de Jong, and H. Weinans. Increased physical activity severely induces osteoarthritic changes in knee joints with papain induced sulfate-glycosaminoglycan depleted cartilage. Arthritis Res. Ther. 16:R32, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Stein, S., E. Strauss, and J. Bosco, 3rd. Advances in the surgical management of articular cartilage defects: autologous chondrocyte implantation techniques in the pipeline. Cartilage. 4:12–19, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Vanlauwe, J., D. B. Saris, J. Victor, K. F. Almqvist, J. Bellemans, and F. P. Luyten. Five-year outcome of characterized chondrocyte implantation versus microfracture for symptomatic cartilage defects of the knee: early treatment matters. Am. J. Sports Med. 39:2566–2574, 2011.

    Article  PubMed  Google Scholar 

  60. Vinatier, C., C. Bouffi, C. Merceron, J. Gordeladze, J. M. Brondello, C. Jorgensen, P. Weiss, J. Guicheux, and D. Noel. Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy. Curr. Stem Cell Res. Ther. 4:318–329, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vunjak-Novakovic, G. Effects of mixing on the composition and morphology of tissue-engineered cartilage. AIChE 42:850–860, 1996.

    Article  CAS  Google Scholar 

  62. Vunjak-Novakovic, G., I. Martin, B. Obradovic, S. Treppo, A. J. Grodzinsky, R. Langer, and L. E. Freed. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J. Orthop. Res. 17:130–138, 1999.

    Article  CAS  PubMed  Google Scholar 

  63. West, P. A., M. P. Bostrom, P. A. Torzilli, and N. P. Camacho. Fourier transform infrared spectral analysis of degenerative cartilage: an infrared fiber optic probe and imaging study. Appl. Spectrosc. 58:376–381, 2004.

    Article  CAS  PubMed  Google Scholar 

  64. Xuan, J. W., M. Bygrave, H. Jiang, F. Valiyeva, J. Dunmore-Buyze, D. W. Holdsworth, J. I. Izawa, G. Bauman, M. Moussa, S. F. Winter, N. M. Greenberg, J. L. Chin, M. Drangova, A. Fenster, and J. C. Lacefield. Functional neoangiogenesis imaging of genetically engineered mouse prostate cancer using three-dimensional power Doppler ultrasound. Cancer Res. 67:2830–2839, 2007.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH R01AR056145 and by the National Institute on Aging, National Institutes of Health, Intramural Research Program

Conflict of Interest

The authors of this manuscript report no conflict of interests related to the work presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Pleshko.

Additional information

Associate Editor Rebecca Kuntz-Willits oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGoverin, C.M., Hanifi, A., Palukuru, U.P. et al. Nondestructive Assessment of Engineered Cartilage Composition by Near Infrared Spectroscopy. Ann Biomed Eng 44, 680–692 (2016). https://doi.org/10.1007/s10439-015-1536-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1536-8

Keywords

Navigation