Skip to main content
Log in

Minimizing Interpolation Bias and Precision Error in In Vivo µCT-Based Measurements of Bone Structure and Dynamics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In vivo µCT imaging allows for high-resolution, longitudinal evaluation of bone properties. Based on this technology, several recent studies have developed in vivo dynamic bone histomorphometry techniques that utilize registered µCT images to identify regions of bone formation and resorption, allowing for longitudinal assessment of bone remodeling. However, this analysis requires a direct voxel-by-voxel subtraction between image pairs, necessitating rotation of the images into the same coordinate system, which introduces interpolation errors. We developed a novel image transformation scheme, matched-angle transformation (MAT), whereby the interpolation errors are minimized by equally rotating both the follow-up and baseline images instead of the standard of rotating one image while the other remains fixed. This new method greatly reduced interpolation biases caused by the standard transformation. Additionally, our study evaluated the reproducibility and precision of bone remodeling measurements made via in vivo dynamic bone histomorphometry. Although bone remodeling measurements showed moderate baseline noise, precision was adequate to measure physiologically relevant changes in bone remodeling, and measurements had relatively good reproducibility, with intra-class correlation coefficients of 0.75–0.95. This indicates that, when used in conjunction with MAT, in vivo dynamic histomorphometry provides a reliable assessment of bone remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Altman, A. R., C. Lott, C. M. De Bakker, W. J. Tseng, L. Qin, and X. S. Liu. Intermittent PTH after prolonged bisphosphonate treatment improves bone structure by inducing substantial new bone formation with decoupled, inhibited bone resorption in ovariectomized rats. In: Orthopaedic Research Society Annual Meeting. Las Vegas, NV, 2015.

  2. Altman, A. R., W. J. Tseng, C. M. de Bakker, A. Chandra, S. Lan, B. K. Huh, S. Luo, M. B. Leonard, L. Qin, and X. S. Liu. Quantification of skeletal growth, modeling, and remodeling by in vivo micro computed tomography. Bone 81:370–379, 2015.

    Article  PubMed  Google Scholar 

  3. Birkhold, A. I., H. Razi, G. N. Duda, R. Weinkamer, S. Checa, and B. M. Willie. The influence of age on adaptive bone formation and bone resorption. Biomaterials 35:9290–9301, 2014.

    Article  CAS  PubMed  Google Scholar 

  4. Bouxsein, M. L., S. K. Boyd, B. A. Christiansen, R. E. Guldberg, K. J. Jepsen, and R. Muller. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 25:1468–1486, 2010.

    Article  PubMed  Google Scholar 

  5. Boyd, S. K., P. Davison, R. Muller, and J. A. Gasser. Monitoring individual morphological changes over time in ovariectomized rats by in vivo micro-computed tomography. Bone 39:854–862, 2006.

    Article  PubMed  Google Scholar 

  6. Boyd, S. K., S. Moser, M. Kuhn, R. J. Klinck, P. L. Krauze, R. Muller, and J. A. Gasser. Evaluation of three-dimensional image registration methodologies for in vivo micro-computed tomography. Ann. Biomed. Eng. 34:1587–1599, 2006.

    Article  PubMed  Google Scholar 

  7. Brouwers, J. E., F. M. Lambers, J. A. Gasser, B. van Rietbergen, and R. Huiskes. Bone degeneration and recovery after early and late bisphosphonate treatment of ovariectomized wistar rats assessed by in vivo micro-computed tomography. Calcif. Tissue Int. 82:202–211, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brouwers, J. E., F. M. Lambers, B. van Rietbergen, K. Ito, and R. Huiskes. Comparison of bone loss induced by ovariectomy and neurectomy in rats analyzed by in vivo micro-CT. J. Orthop. Res. 27:1521–1527, 2009.

    Article  PubMed  Google Scholar 

  9. Brouwers, J. E., B. van Rietbergen, and R. Huiskes. No effects of in vivo micro-CT radiation on structural parameters and bone marrow cells in proximal tibia of wistar rats detected after eight weekly scans. J. Orthop. Res. 25:1325–1332, 2007.

    Article  PubMed  Google Scholar 

  10. Buie, H. R., C. P. Moore, and S. K. Boyd. Postpubertal architectural developmental patterns differ between the L3 vertebra and proximal tibia in three inbred strains of mice. J. Bone Miner. Res. 23:2048–2059, 2008.

    Article  PubMed  Google Scholar 

  11. Campbell, G. M., H. R. Buie, and S. K. Boyd. Signs of irreversible architectural changes occur early in the development of experimental osteoporosis as assessed by in vivo micro-CT. Osteoporos. Int. 19:1409–1419, 2008.

    Article  CAS  PubMed  Google Scholar 

  12. de Bakker, C. M., A. R. Altman, W. J. Tseng, M. B. Tribble, C. Li, A. Chandra, L. Qin, and X. S. Liu. muCT-based, in vivo dynamic bone histomorphometry allows 3D evaluation of the early responses of bone resorption and formation to PTH and alendronate combination therapy. Bone 73C:198–207, 2015.

    Article  Google Scholar 

  13. Goff, M. G., C. R. Slyfield, S. R. Kummari, E. V. Tkachenko, S. E. Fischer, Y. H. Yi, M. G. Jekir, T. M. Keaveny, and C. J. Hernandez. Three-dimensional characterization of resorption cavity size and location in human vertebral trabecular bone. Bone 51:28–37, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Johnson, H. J., M. McCormick, L. Ibanez, and I. S. Consortium. The ITK Software Guide, 2013.

  15. Kohler, T., M. Beyeler, D. Webster, and R. Muller. Compartmental bone morphometry in the mouse femur: reproducibility and resolution dependence of microtomographic measurements. Calcif. Tissue Int. 77:281–290, 2005.

    Article  CAS  PubMed  Google Scholar 

  16. Lambers, F. M., G. Kuhn, F. A. Schulte, K. Koch, and R. Muller. Longitudinal assessment of in vivo bone dynamics in a mouse tail model of postmenopausal osteoporosis. Calcif. Tissue Int. 90:108–119, 2012.

    Article  CAS  PubMed  Google Scholar 

  17. Lan, S., S. Luo, B. K. Huh, A. Chandra, A. R. Altman, L. Qin, and X. S. Liu. 3D image registration is critical to ensure accurate detection of longitudinal changes in trabecular bone density, microstructure, and stiffness measurements in rat tibiae by in vivo microcomputed tomography (muCT). Bone 56:83–90, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lukas, C., D. Ruffoni, F. M. Lambers, F. A. Schulte, G. Kuhn, P. Kollmannsberger, R. Weinkamer, and R. Muller. Mineralization kinetics in murine trabecular bone quantified by time-lapsed in vivo micro-computed tomography. Bone 56:55–60, 2013.

    Article  PubMed  Google Scholar 

  19. Matheny, J. B., C. R. Slyfield, E. V. Tkachenko, I. Lin, K. M. Ehlert, R. E. Tomlinson, D. L. Wilson, and C. J. Hernandez. Anti-resorptive agents reduce the size of resorption cavities: a three-dimensional dynamic bone histomorphometry study. Bone 57:277–283, 2013.

    Article  CAS  PubMed  Google Scholar 

  20. Nishiyama, K. K., G. M. Campbell, R. J. Klinck, and S. K. Boyd. Reproducibility of bone micro-architecture measurements in rodents by in vivo micro-computed tomography is maximized with three-dimensional image registration. Bone 46:155–161, 2010.

    Article  PubMed  Google Scholar 

  21. Schulte, F. A., F. M. Lambers, G. Kuhn, and R. Muller. In vivo micro-computed tomography allows direct three-dimensional quantification of both bone formation and bone resorption parameters using time-lapsed imaging. Bone 48:433–442, 2011.

    Article  PubMed  Google Scholar 

  22. Schulte, F. A., F. M. Lambers, T. L. Mueller, M. Stauber, and R. Muller. Image interpolation allows accurate quantitative bone morphometry in registered micro-computed tomography scans. Comput. Methods Biomech. Biomed. Eng. 17:539–548, 2014.

    Article  Google Scholar 

  23. Schulte, F. A., D. Ruffoni, F. M. Lambers, D. Christen, D. J. Webster, G. Kuhn, and R. Muller. Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level. PLoS ONE 8:e62172, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shrout, P. E., and J. L. Fleiss. Intraclass correlations: uses in assessing rater reliability. Psychol. Bull. 86:420–428, 1979.

    Article  CAS  PubMed  Google Scholar 

  25. Slyfield, Jr, C. R., K. E. Niemeyer, E. V. Tkachenko, R. E. Tomlinson, G. G. Steyer, C. G. Patthanacharoenphon, G. J. Kazakia, D. L. Wilson, and C. J. Hernandez. Three-dimensional surface texture visualization of bone tissue through epifluorescence-based serial block face imaging. J. Microsc. 236:52–59, 2009.

    Article  PubMed  Google Scholar 

  26. Slyfield, C. R., E. V. Tkachenko, D. L. Wilson, and C. J. Hernandez. Three-dimensional dynamic bone histomorphometry. J. Bone Miner. Res. 27:486–495, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tkachenko, E. V., C. R. Slyfield, R. E. Tomlinson, J. R. Daggett, D. L. Wilson, and C. J. Hernandez. Voxel size and measures of individual resorption cavities in three-dimensional images of cancellous bone. Bone 45:487–492, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Voor, M. J., S. Yang, R. L. Burden, and S. W. Waddell. In vivo micro-CT scanning of a rabbit distal femur: repeatability and reproducibility. J. Biomech. 41:186–193, 2008.

    Article  PubMed  Google Scholar 

  29. Waarsing, J. H., J. S. Day, J. C. van der Linden, A. G. Ederveen, C. Spanjers, N. De Clerck, A. Sasov, J. A. Verhaar, and H. Weinans. Detecting and tracking local changes in the tibiae of individual rats: a novel method to analyse longitudinal in vivo micro-CT data. Bone 34:163–169, 2004.

    Article  CAS  PubMed  Google Scholar 

  30. Waarsing, J. H., J. S. Day, J. A. Verhaar, A. G. Ederveen, and H. Weinans. Bone loss dynamics result in trabecular alignment in aging and ovariectomized rats. J. Orthop. Res. 24:926–935, 2006.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH/NIAMS R03-AR065145 (to XSL), NIH/NIAMS K01-AR066743 (to XSL), NIH/NIAMS T32-AR007132 (to CMJdB), National Science Foundation Graduate Research Fellowship (to CMJdB), Penn Institute on Aging Pilot Grant (to XSL), and Penn Center for Musculoskeletal Disorders (PCMD; NIH/NIAMS P30-AR050950).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Sherry Liu.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Bakker, C.M.J., Altman, A.R., Li, C. et al. Minimizing Interpolation Bias and Precision Error in In Vivo µCT-Based Measurements of Bone Structure and Dynamics. Ann Biomed Eng 44, 2518–2528 (2016). https://doi.org/10.1007/s10439-015-1527-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1527-9

Keywords

Navigation