Skip to main content
Log in

Dielectrophoresis-Mediated Electrodeformation as a Means of Determining Individual Platelet Stiffness

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Platelets, essential for hemostasis, are easily activated via biochemical and mechanical stimuli. Cell stiffness is a vital parameter modulating the mechano-transduction of exogenous mechanical stimuli. While methods exist to measure cell stiffness, no ready method exists for measuring platelet stiffness that is both minimally-contacting, imparting minimal exogenous force and non-activating. We developed a minimal-contact methodology capable of trapping and measuring the stiffness of individual platelets utilizing dielectrophoresis (DEP)-mediated electrodeformation. Parametric studies demonstrate a non-uniform electric field in the MHz frequency range (0.2–20 MHz) is required for generating effective DEP forces on platelets, suspended in isotonic buffer with conductivity ~100–200 μS/cm. A nano-Newton DEP force (0.125–4.5 nN) was demonstrated to be essential for platelet electrodeformation, which could be generated with an electric field with strength of 1.5–9 V/μm. Young’s moduli of platelets were calculated using a Maxwell stress tensor model and stress-deformation relationship. Platelet stiffness was determined to be in the range of 3.5 ± 1.4 and 8.5 ± 1.5 kPa for resting and 0.4% paraformaldehyde-treated cells, respectively. The developed methodology fills a gap in approaches of measuring individual platelet stiffness, free of inadvertent platelet activation, which will facilitate further studies of mechanisms involved in mechanically-mediated platelet activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Avrahami, I. and M. Gharib. Effects of membrane stiffening on focal-adhesion bonding under steady and unsteady conditions. In: IEEE Bio Micro and Nanosystems Conference, 2006. BMN’06 2006.

  2. Bakewell, D. J., N. Vergara-Irigaray, and D. Holmes. Dielectrophoresis of Biomolecules. JSM Nanotechnol. Nanomed. 1(1):1003, 2013.

    Google Scholar 

  3. Berger, G., D. W. Hartwell, and D. D. Wagner. P-Selectin and platelet clearance. Blood 92(11):4446–4452, 1998.

    CAS  PubMed  Google Scholar 

  4. Berman, C. L., et al. A platelet alpha granule membrane-protein that is associated with the plasma-membrane after activation—characterization and subcellular-localization of platelet activation-dependent granule-external membrane-protein. J. Clin. Invest. 78(1):130–137, 1986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bluestein, D., et al. Device thrombogenicity emulation: A novel methodology for optimizing the thromboresistance of cardiovascular devices (vol 46, pg 334, 2012). J. Biomech. 46(7):1413, 2013.

    Article  Google Scholar 

  6. Chen, J., et al. Electrodeformation for single cell mechanical characterization. J. Micromech. Microeng. 21(5):054012, 2011.

    Article  Google Scholar 

  7. Chen, J., et al. Electrodeformation for Single Cell Mechanical Characterization. 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (Mems), pp. 1119-1122, 2011.

  8. Cheng, Q., et al. PDMS elastic micropost arrays for studying vascular smooth muscle cells. Sens. Actuators B-Chem. 188:1055–1063, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Farndale, R. W. Collagen-induced platelet activation. Blood Cells Mol. Dis. 36(2):162–165, 2006.

    Article  CAS  PubMed  Google Scholar 

  10. Ferry, J. D. Viscoelastic Properties of Polymers. New York: Wiley, p. 482, 1961.

    Google Scholar 

  11. Gao, J., et al. Hybrid electrokinetic manipulation in high-conductivity media. Lab Chip 11(10):1770–1775, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guck, J., et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88(5):3689–3698, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo, Q., S. Park, and H. S. Ma. Microfluidic micropipette aspiration for measuring the deformability of single cells. Lab Chip 12(15):2687–2695, 2012.

    Article  CAS  PubMed  Google Scholar 

  14. Haga, J. H., et al. Quantification of the passive mechanical properties of the resting platelet. Ann. Biomed. Eng. 26(2):268–277, 1998.

    Article  CAS  PubMed  Google Scholar 

  15. Haghi, M., D. Traini, L. G. Wood, B. Oliver, P. M. Young, and W. Chrzanowski. A “soft spot” for drug transport: modulation of cell stiffness using fatty acids and its impact on drug transport in lung model. J. Mater. Chem. B 3:2583–2589, 2015.

    Article  CAS  Google Scholar 

  16. Hartwig, J. H. Mechanisms of actin rearrangements mediating platelet activation. J. Cell Biol. 118(6):1421–1442, 1992.

    Article  CAS  PubMed  Google Scholar 

  17. Hou, H. W., et al. Deformability based cell margination - A simple microfluidic design for malarial infected red blood cell filtration. 6th World Congress of. Biomechanics 31:1671–1674, 2010.

    Google Scholar 

  18. Hsulin, S. C., et al. a platelet membrane-protein expressed during platelet activation and secretion—studies using a monoclonal-antibody specific for thrombin-activated platelets. J. Biol. Chem. 259(14):9121–9126, 1984.

    CAS  Google Scholar 

  19. Hu, X. Y., et al. Marker-specific sorting of rare cells using dielectrophoresis. Proc. Natl. Acad. Sci. USA 102(44):15757–15761, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jesty, J., and D. Bluestein. Acetylated prothrombin as a substrate in the measurement of the procoagulant activity of platelets: elimination of the feedback activation of platelets by thrombin. Anal. Biochem. 272(1):64–70, 1999.

    Article  CAS  PubMed  Google Scholar 

  21. Kapoor, J. R. Platelet activation and atherothrombosis. New Engl. J. Med. 358(15):1638, 2008.

    Article  CAS  PubMed  Google Scholar 

  22. Koay, E. J., A. C. Shieh, and K. A. Athanasiou. Creep indentation of single cells. J. Biomech. Eng.-Trans. ASME 125(3):334–341, 2003.

    Article  Google Scholar 

  23. Kroll, M. H., et al. Platelets and shear stress. Blood 88(5):1525–1541, 1996.

    CAS  PubMed  Google Scholar 

  24. Kuwahara, M., et al. Platelet shape changes and adhesion under high shear flow. Arterioscler. Thromb. Vasc. Biol. 22(2):329–334, 2002.

    Article  CAS  PubMed  Google Scholar 

  25. Lee, S. W., et al. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers. Invest. Ophthalmol. Vis. Sci. 50(12):5859–5866, 2009.

    Article  PubMed  Google Scholar 

  26. Leung, S. L., et al. Gold nano-particle-based thermal sensors fabricated using microspotting and DEP techniques. Sens. Actuators A-Phys. 178:32–39, 2012.

    Article  CAS  Google Scholar 

  27. Lim, C. T., E. H. Zhou, and S. T. Quek. Mechanical models for living cells—A review. J. Biomech. 39(2):195–216, 2006.

    Article  CAS  PubMed  Google Scholar 

  28. Lincoln, B., et al. Deformability-based flow cytometry. Cytometry Part A 59A(2):203–209, 2004.

    Article  Google Scholar 

  29. Lord, M. S., et al. The modulation of platelet adhesion and activation by chitosan through plasma and extracellular matrix proteins. Biomaterials 32(28):6655–6662, 2011.

    Article  CAS  PubMed  Google Scholar 

  30. Lu, H., et al. Microfluidic shear devices for quantitative analysis of cell adhesion. Anal. Chem. 76(18):5257–5264, 2004.

    Article  CAS  PubMed  Google Scholar 

  31. MacQueen, L. A., M. D. Buschmann, and M. R. Wertheimer. Mechanical properties of mammalian cells in suspension measured by electro-deformation. J. Micromech. Microeng. 20(6):065007, 2010.

    Article  Google Scholar 

  32. Martinez, E. J., Y. Lanir, and S. Einav. Effects of contact-induced membrane stiffening on platelet adhesion. Biomech. Model. Mechanobiol. 2(3):157–167, 2004.

    Article  PubMed  Google Scholar 

  33. Maugis, D., and M. Barquins. Fracture mechanics and adherence of viscoelastic bodies. J. Phys. D-Appl. Phys. 11(14):1989–2023, 1978.

    Article  Google Scholar 

  34. Morgan, H., M. P. Hughes, and N. G. Green. Separation of submicron bioparticles by dielectrophoresis. Biophys. J. 77(1):516–525, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Needham, D., and R. M. Hochmuth. Rapid flow of passive neutrophils into a 4 Mu-M pipette and measurement of cytoplasmic viscosity. J. Biomech. Eng.-Trans. ASME 112(3):269–276, 1990.

    Article  CAS  Google Scholar 

  36. Neuman, K. C., and A. Nagy. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5(6):491–505, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nobili, M., et al. Platelet activation due to hemodynamic shear stresses: Damage accumulation model and comparison to in vitro measurements. ASAIO J. 54(1):64–72, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Park, Y., et al. Measurement of red blood cell mechanics during morphological changes. Proc. Natl. Acad. Sci. USA 107(15):6731–6736, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pasqua, A., et al. Large-scale simulations of fluctuating biological membranes. J. Chem. Phys. 132(15):154107, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pohl, H. A. The motion and precipitation of suspensoids in divergent electric fields. J. Appl. Phys. 22(7):869–871, 1951.

    Article  CAS  Google Scholar 

  41. Pohl, H.A., Dielectrophoresis: applications to the characterization and separation of cells. In: Methods of Cell Separation, N. Catsimpoolas, ed., New York: CRC Press, 1977.

  42. Pohl, H. A. Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields, Vol. 80. Cambridge: University Press Cambridge, 1978.

    Google Scholar 

  43. Pohl, H. A., and J. S. Crane. Dielectrophoresis of cells. Biophys. J. 11(9):711, 1971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pommer, M. S., et al. Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels. Electrophoresis 29(6):1213–1218, 2008.

    Article  CAS  PubMed  Google Scholar 

  45. Radmacher, M., et al. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70(1):556–567, 1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ramos, A., et al. AC electrokinetics: a review of forces in microelectrode structures. J. Phys. D-Appl. Phys. 31(18):2338–2353, 1998.

    Article  CAS  Google Scholar 

  47. Rand, R. P. Mechanical properties of the red cell membrane. Ii. Viscoelastic breakdown of the membrane. Biophys. J. 4:303–316, 1964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Robert, O., M. J. B. Ritchie, and Paul Hansma. Plasticity and toughness in bone. Phys. Today 62(2):41–47, 2009.

    Google Scholar 

  49. Santos, S. F. D., and J. D. A. Rodrigues. Correlation between fracture toughness, work of fracture and fractal dimensions of Alumina-mullite-zirconia composites. Mater. Res. 6(2):219–226, 2003.

    Article  Google Scholar 

  50. Sato, M., M. J. Levesque, and R. M. Nerem. Micropipette aspiration of cultured bovine aortic endothelial-cells exposed to shear-stress. Arteriosclerosis 7(3):276–286, 1987.

    Article  CAS  PubMed  Google Scholar 

  51. Sheriff, J., et al. High-shear stress sensitizes platelets to subsequent low-shear conditions. Ann. Biomed. Eng. 38(4):1442–1450, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sheriff, J., et al. Evaluation of shear-induced platelet activation models under constant and dynamic shear stress loading conditions relevant to devices (vol 41, pg 1279, 2013). Ann. Biomed. Eng. 41(12):2712, 2013.

    Article  Google Scholar 

  53. Sims, P. J., et al. Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J. Biol. Chem. 263(34):18205–18212, 1988.

    CAS  PubMed  Google Scholar 

  54. Sun, M., et al. The effect of cellular cholesterol on membrane-cytoskeleton adhesion. J. Cell Sci. 120(Pt 13):2223–2231, 2007.

    Article  CAS  PubMed  Google Scholar 

  55. Tran, P. L., Valerio, L., Yamaguchi, J., Brengle, W., DeCook, T.E., Hutchinson, M., Sen, N., Bluestein, D., Slepian, M.J. Dimethyl Sulfoxide: A New Nemesis of Shear-Induced Platelet Activation. In: Nanoengineering for Medicine and Biology. 2014. San Francisco, CA.

  56. Valerio, L. Multi-Perspective Investigation of the Effectiveness of Anti-Thrombotic Treatments in Association with Shear-Mediated Platelet Activation, 2014, Politechnico di Milano, Milan, Italy (unpublished Doctoral Dissertation).

  57. Valero, A., T. Braschler, and P. Renaud. A unified approach to dielectric single cell analysis: impedance and dielectrophoretic force spectroscopy. Lab Chip 10(17):2216–2225, 2010.

    Article  CAS  PubMed  Google Scholar 

  58. Van Vliet, K. J., G. Bao, and S. Suresh. The biomechanics toolbox: experimental approaches for living cells and biomolecules. Acta Mater. 51(19):5881–5905, 2003.

    Article  Google Scholar 

  59. Vieira-de-Abreu, A., et al. Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin. Immunopathol. 34(1):5–30, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, X. J., X. B. Wang, and P. R. C. Gascoyne. General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method. J. Electrostat. 39(4):277–295, 1997.

    Article  Google Scholar 

  61. Wang, X. B., et al. Dielectrophoretic manipulation of particles. IEEE Trans. Ind. Appl. 33(3):660–669, 1997.

    Article  Google Scholar 

  62. Ward, M. D., and D. A. Hammer. A theoretical analysis for the effect of focal contact formation on cell-substrate attachment strength. Biophys. J. 64(3):936–959, 1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wong, P. K., W. Tan, and C. M. Ho. Cell relaxation after electrodeformation: effect of latrunculin A on cytoskeletal actin. J. Biomech. 38(3):529–535, 2005.

    Article  PubMed  Google Scholar 

  64. Xu, W. W., et al. Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. Plos One 7(10):e46609, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yamaguchi, J., et al. Desensitization of DMSO-treated platelets to common agonists via membrane modulation. Faseb J. 28(1):598, 2014.

    Google Scholar 

  66. Zhang, J., et al. Nanosecond pulse electric field (nanopulse): a novel non-ligand agonist for platelet activation. Arch. Biochem. Biophys. 471(2):240–248, 2008.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, C., et al. Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Anal. Bioanal. Chem. 396(1):401–420, 2010.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, P., et al. Multiscale particle-based modeling of flowing platelets in blood plasma using dissipative particle dynamics and coarse grained molecular dynamics. Cell. Mol. Bioeng. 7(4):552–574, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding was provided by NIH/NIBIB Quantum 1U01 EBO 12487.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin J. Slepian.

Additional information

Associate Editor Aleksander S. Popel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leung, S.L., Lu, Y., Bluestein, D. et al. Dielectrophoresis-Mediated Electrodeformation as a Means of Determining Individual Platelet Stiffness. Ann Biomed Eng 44, 903–913 (2016). https://doi.org/10.1007/s10439-015-1383-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1383-7

Keywords

Navigation