Skip to main content
Log in

Multiscale Particle-Based Modeling of Flowing Platelets in Blood Plasma Using Dissipative Particle Dynamics and Coarse Grained Molecular Dynamics

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

We developed a multiscale particle-based model of platelets, to study the transport dynamics of shear stresses between the surrounding fluid and the platelet membrane. This model facilitates a more accurate prediction of the activation potential of platelets by viscous shear stresses—one of the major mechanisms leading to thrombus formation in cardiovascular diseases and in prosthetic cardiovascular devices. The interface of the model couples coarse-grained molecular dynamics (CGMD) with dissipative particle dynamics (DPD). The CGMD handles individual platelets while the DPD models the macroscopic transport of blood plasma in vessels. A hybrid force field is formulated for establishing a functional interface between the platelet membrane and the surrounding fluid, in which the microstructural changes of platelets may respond to the extracellular viscous shear stresses transferred to them. The interaction between the two systems preserves dynamic properties of the flowing platelets, such as the flipping motion. Using this multiscale particle-based approach, we have further studied the effects of the platelet elastic modulus by comparing the action of the flow-induced shear stresses on rigid and deformable platelet models. The results indicate that neglecting the platelet deformability may overestimate the stress on the platelet membrane, which in turn may lead to erroneous predictions of the platelet activation under viscous shear flow conditions. This particle-based fluid–structure interaction multiscale model offers for the first time a computationally feasible approach for simulating deformable platelets interacting with viscous blood flow, aimed at predicting flow induced platelet activation by using a highly resolved mapping of the stress distribution on the platelet membrane under dynamic flow conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Alemu, Y., and D. Bluestein. Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif. Organs 31:677–688, 2007.

    Article  Google Scholar 

  2. Alemu, Y., G. Girdhar, M. Xenos, J. Sheriff, J. Jesty, S. Einav, and D. Bluestein. Design optimization of a mechanical heart valve for reducing valve thrombogenicity—a case study with ATS valve. ASAIO J. 56:389–396, 2010.

    Article  Google Scholar 

  3. Allen, M. P., and D. J. Tildesley. Computer Simulation of Liquids. Oxford: Clarendon Press, 1989.

    Google Scholar 

  4. AlMomani, T., H. S. Udaykumar, J. S. Marshall, and K. B. Chandran. Micro-scale dynamic simulation of erythrocyte–platelet interaction in blood flow. Ann. Biomed. Eng. 36:905–920, 2008.

    Article  Google Scholar 

  5. Alsheikh-Ali, A. A., G. D. Kitsios, E. M. Balk, J. Lau, and S. Ip. The vulnerable atherosclerotic plaque: scope of the literature. Ann. Intern. Med. 153:387–395, 2010.

    Article  Google Scholar 

  6. Apel, J., R. Paul, S. Klaus, T. Siess, and H. Reul. Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics. Artif. Organs 25:341–347, 2001.

    Article  Google Scholar 

  7. Avrahami, I., and M. Gharib. Effects of membrane stiffening on focal-adhesion bonding under steady and unsteady conditions. Bio Micro and Nanosystems Conference, 2006. BMN’06: IEEE; 2006, p. 85.

  8. Bluestein, D., Y. Alemu, I. Avrahami, M. Gharib, K. Dumont, J. J. Ricotta, and S. Einav. Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. J. Biomech. 41:1111–1118, 2008.

    Article  Google Scholar 

  9. Bluestein, D., W. Yin, K. Affeld, and J. Jesty. Flow-induced platelet activation in mechanical heart valves. J. Heart Valve Dis. 13:501–508, 2004.

    Google Scholar 

  10. Chee, C. Y., H. P. Lee, and C. Lu. Using 3D fluid–structure interaction model to analyse the biomechanical properties of erythrocyte. Phys. Lett. A 372:1357–1362, 2008.

    Article  MATH  Google Scholar 

  11. Deng, Y., P. Zhang, C. Marques, R. Powell, and L. Zhang. Analysis of Linpack and power efficiencies of the world’s TOP500 supercomputers. Parallel Comput. 39:271–279, 2013.

    Article  MathSciNet  Google Scholar 

  12. Dror, R. O., R. M. Dirks, J. P. Grossman, H. Xu, and D. E. Shaw. Biomolecular simulation: a computational microscope for molecular biology. Annu. Rev. Biophys. 41:429–452, 2012.

    Article  Google Scholar 

  13. Espanol, P., and P. Warren. Statistical mechanics of dissipative particle dynamics. EPL (Europhysics Letters) 30:191, 1995.

    Article  Google Scholar 

  14. Fedosov, D. A., B. Caswell, and G. E. Karniadakis. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys. J. 98:2215–2225, 2010.

    Article  Google Scholar 

  15. Fedosov, D. A., B. Caswell, A. S. Popel, and G. E. Karniadakis. Blood flow and cell-free layer in microvessels. Microcirculation 17:615–628, 2010.

    Article  Google Scholar 

  16. Fedosov, D. A., M. Dao, G. E. Karniadakis, and S. Suresh. Computational biorheology of human blood flow in health and disease. Ann. Biomed. Eng. 42:368–387, 2014.

    Article  Google Scholar 

  17. Fedosov, D. A., and G. E. Karniadakis. Triple-decker: Interfacing atomistic–mesoscopic–continuum flow regimes. J. Comput. Phys. 228:1157–1171, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  18. Fedosov, D. A., H. Lei, B. Caswell, S. Suresh, and G. E. Karniadakis. Multiscale modeling of red blood cell mechanics and blood flow in malaria. PLoS Comput. Biol. 7:e1002270, 2011.

    Article  MathSciNet  Google Scholar 

  19. Fedosov, D. A., W. Pan, B. Caswell, G. Gompper, and G. E. Karniadakis. Predicting human blood viscosity in silico. Proc. Natl. Acad. Sci. USA 108:11772–11777, 2011.

    Article  Google Scholar 

  20. Fedosov, D. A., I. V. Pivkin, and G. E. Karniadakis. Velocity limit in DPD simulations of wall-bounded flows. J. Comput. Phys. 227:2540–2559, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  21. Feng, R., M. Xenos, G. Girdhar, W. Kang, J. W. Davenport, Y. F. Deng, and D. Bluestein. Viscous flow simulation in a stenosis model using discrete particle dynamics: a comparison between DPD and CFD. Biomech. Model. Mechanobiol. 11:119–129, 2012.

    Article  Google Scholar 

  22. Filipovic, N., M. Kojic, and A. Tsuda. Modelling thrombosis using dissipative particle dynamics method. Philos. Trans. R. Soc. A 366:3265–3279, 2008.

    Article  MathSciNet  Google Scholar 

  23. Filipovic, N., D. Ravnic, M. Kojic, S. J. Mentzer, S. Haber, and A. Tsuda. Interactions of blood cell constituents: experimental investigation and computational modeling by discrete particle dynamics algorithm. Microvasc. Res. 75:279–284, 2008.

    Article  Google Scholar 

  24. Frojmovic, M. M., and J. G. Milton. Human platelet size, shape, and related functions in health and disease. Physiol. Rev. 62:185–261, 1982.

    Google Scholar 

  25. Goldstein, H. Classical mechanics (2nd ed.). Reading, MA: Addison-Wesley Pub. Co., 1980.

    MATH  Google Scholar 

  26. Groot, R., and P. Warren. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107:4423–4435, 1997.

    Article  Google Scholar 

  27. Haga, J. H., A. J. Beaudoin, J. G. White, and J. Strony. Quantification of the passive mechanical properties of the resting platelet. Ann. Biomed. Eng. 26:268–277, 1998.

    Article  Google Scholar 

  28. Hartwig, J. H., and M. Desisto. The cytoskeleton of the resting human blood–Platelet—structure of the membrane skeleton and its attachment to actin-filaments. J. Cell Biol. 112:407–425, 1991.

    Article  Google Scholar 

  29. Heinz, H., W. Paul, and K. Binder. Calculation of local pressure tensors in systems with many-body interactions. Phys. Rev. E 72:066704, 2005.

    Article  MathSciNet  Google Scholar 

  30. Hoover, W. G., C. G. Hoover, and J. F. Lutsko. Microscopic and macroscopic stress with gravitational and rotational forces. Phys. Rev. E 79:036709, 2009.

    Article  Google Scholar 

  31. Ishiyama, T., K. Nitadori, and J. Makino. 4.45 Pflops astrophysical N-body simulation on K computer: the gravitational trillion-body problem. Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. Salt Lake City, UT: IEEE Computer Society Press; 2012, pp. 1–10.

  32. Jeffery, G. B. The motion of ellipsoidal particles in a viscous fluid. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 102:161–179, 1922.

    Article  Google Scholar 

  33. Jesty, J., W. Yin, P. Perrotta, and D. Bluestein. Platelet activation in a circulating flow loop: combined effects of shear stress and exposure time. Platelets 14:143–149, 2003.

    Article  Google Scholar 

  34. Kesmarky, G., P. Kenyeres, M. Rabai, and K. Toth. Plasma viscosity: a forgotten variable. Clin. Hemorheol. Microcirc. 39:243–246, 2008.

    Google Scholar 

  35. Kroll, M. H., J. D. Hellums, L. V. McIntire, A. I. Schafer, and J. L. Moake. Platelets and shear stress. Blood 88:1525–1541, 1996.

    Google Scholar 

  36. Lees, A., and S. Edwards. The computer study of transport processes under extreme conditions. J. Phys. C 5:1921, 1972.

    Article  Google Scholar 

  37. Lei, H., D. A. Fedosov, and G. E. Karniadakis. Time-dependent and outflow boundary conditions for Dissipative Particle Dynamics. J. Comput. Phys. 230:3765–3779, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  38. Martinez, E. J., Y. Lanir, and S. Einav. Effects of contact-induced membrane stiffening on platelet adhesion. Biomech. Model. Mechanobiol. 2:157–167, 2004.

    Article  Google Scholar 

  39. Mody, N. A., and M. R. King. Three-dimensional simulations of a platelet-shaped spheroid near a wall in shear flow. Phys. Fluids 17:113302-1–113302-12, 2005.

    Article  Google Scholar 

  40. Mody, N. A., and M. R. King. Platelet adhesive dynamics. Part I: Characterization of platelet hydrodynamic collisions and wall effects. Biophys. J. 95:2539–2555, 2008.

    Article  Google Scholar 

  41. Mody, N. A., and M. R. King. Platelet adhesive dynamics. Part II: High shear-induced transient aggregation via GPIbalpha-vWF-GPIbalpha bridging. Biophys. J. 95:2556–2574, 2008.

    Article  Google Scholar 

  42. Mody, N. A., O. Lomakin, T. A. Doggett, T. G. Diacovo, and M. R. King. Mechanics of transient platelet adhesion to von Willebrand factor under flow. Biophys. J. 88:1432–1443, 2005.

    Article  Google Scholar 

  43. Moses, K. B., S. G. Advani, and A. Reinhardt. Investigation of fiber motion near solid boundaries in simple shear flow. Rheol. Acta 40:296–306, 2001.

    Article  Google Scholar 

  44. O’Brien, J. R., and G. P. Salmon. An independent haemostatic mechanism: shear induced platelet aggregation. Adv. Exp. Med. Biol. 281:287–296, 1990.

    Article  Google Scholar 

  45. Padding, J. T., and W. J. Briels. Systematic coarse-graining of the dynamics of entangled polymer melts: the road from chemistry to rheology. J. Phys. Condens. Matter 23:233101, 2011.

    Article  Google Scholar 

  46. Pasqua, A., L. Maibaum, G. Oster, D. A. Fletcher, and P. L. Geissler. Large-scale simulations of fluctuating biological membranes. J. Chem. Phys. 132:154107, 2010.

    Article  Google Scholar 

  47. Pivkin, I. V., and G. E. Karniadakis. A new method to impose no-slip boundary conditions in dissipative particle dynamics. J. Comput. Phys. 207:114–128, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  48. Pivkin, I. V., and G. E. Karniadakis. Accurate coarse-grained modeling of red blood cells. Phys. Rev. Lett. 101:118105, 2008.

    Article  Google Scholar 

  49. Plimpton, S., A. Thompson, and P. Crozier. LAMMPS Molecular Dynamics Simulator. 2014. http://lammps.sandia.gov/.

  50. Pozrikidis, C. Flipping of an adherent blood platelet over a substrate. J. Fluid Mech. 568:161–172, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  51. Ramanujan, S., and C. Pozrikidis. Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities. J. Fluid Mech. 361:117–143, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  52. Rambhia, S. H., X. Liang, M. Xenos, Y. Alemu, N. Maldonado, A. Kelly, S. Chakraborti, S. Weinbaum, L. Cardoso, S. Einav, and D. Bluestein. Microcalcifications increase coronary vulnerable plaque rupture potential: a patient-based micro-CT fluid–structure interaction study. Ann. Biomed. Eng. 40:1443–1454, 2012.

    Article  Google Scholar 

  53. Reichl, L. E. A Modern Course in Statistical Physics. Austin: University of Texas Press, 1980.

    Google Scholar 

  54. Reichl, L. E., and I. Prigogine. A Modern Course in Statistical Physics. Austin: University of Texas press, 1980.

    Google Scholar 

  55. Revenga, M., I. Zuniga, P. Espanol, and I. Pagonabarraga. Boundary models in DPD. Int. J. Mod. Phys. C 9:1319–1328, 1998.

    Article  Google Scholar 

  56. Riniker, S., J. R. Allison, and W. F. van Gunsteren. On developing coarse-grained models for biomolecular simulation: a review. Phys. Chem. Chem. Phys. 14:12423–12430, 2012.

    Article  Google Scholar 

  57. Rossinelli, D., B. Hejazialhosseini, P. Hadjidoukas, C. Bekas, A. Curioni, A. Bertsch, S. Futral, S. J. Schmidt, N. A. Adams, and P. Koumoutsakos. 11 PFLOP/s simulations of cloud cavitation collapse. Proceedings of SC13: International Conference for High Performance Computing, Networking, Storage and Analysis. Denver, Colorado: ACM; 2013, pp. 1–13.

  58. Sheriff, J., D. Bluestein, G. Girdhar, and J. Jesty. High-shear stress sensitizes platelets to subsequent low-shear conditions. Ann. Biomed. Eng. 38:1442–1450, 2010.

    Article  Google Scholar 

  59. Sheriff, J., J. S. Soares, M. Xenos, J. Jesty, M. J. Slepian, and D. Bluestein. Evaluation of shear-induced platelet activation models under constant and dynamic shear stress loading conditions relevant to devices. Ann. Biomed. Eng. 41:1279–1296, 2013.

    Article  Google Scholar 

  60. Soares, J. S., C. Gao, Y. Alemu, M. Slepian, and D. Bluestein. Simulation of platelets suspension flowing through a stenosis model using a dissipative particle dynamics approach. Ann. Biomed. Eng. 41:2318–2333, 2013.

    Article  Google Scholar 

  61. Soddemann, T., B. Dünweg, and K. Kremer. Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Phys. Rev. E 68:046702, 2003.

    Article  Google Scholar 

  62. Subramaniyan, A. K., and C. T. Sun. Continuum interpretation of virial stress in molecular simulations. Int. J. Solids Struct. 45:4340–4346, 2008.

    Article  MATH  Google Scholar 

  63. Sweet, C. R., S. Chatterjee, Z. Xu, K. Bisordi, E. D. Rosen, and M. Alber. Modelling platelet–blood flow interaction using the subcellular element Langevin method. J. R. Soc. Interface 8:1760–1771, 2011.

    Article  Google Scholar 

  64. Symeonidis, V., and G. E. Karniadakis. A family of time-staggered schemes for integrating hybrid DPD models for polymers: algorithms and applications. J. Comput. Phys. 218:82–101, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  65. Thompson, A. P., S. J. Plimpton, and W. Mattson. General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. J. Chem. Phys. 131:154107, 2009.

    Article  Google Scholar 

  66. Tosenberger, A., F. Ataullakhanov, N. Bessonov, M. Panteleev, A. Tokarev, and V. Volpert. Modelling of thrombus growth and growth stop in flow by the method of dissipative particle dynamics. Russ. J. Numer. Anal. Math. Model. 27:507–522, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  67. Tuckerman, M. Statistical Mechanics and Molecular Simulations. Oxford: Oxford University Press, 2008.

    Google Scholar 

  68. Visser, D. C., H. C. J. Hoefsloot, and P. D. Iedema. Modelling multi-viscosity systems with dissipative particle dynamics. J. Comput. Phys. 214:491–504, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  69. Wang, N. T., and A. L. Fogelson. Computational methods for continuum models of platelet aggregation. J. Comput. Phys. 151:649–675, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  70. Ward, M. D., and D. A. Hammer. A theoretical analysis for the effect of focal contact formation on cell-substrate attachment strength. Biophys. J. 64:936–959, 1993.

    Article  Google Scholar 

  71. Willemsen, S. M., H. C. J. Hoefsloot, and P. D. Iedema. No-slip boundary condition in dissipative particle dynamics. Int. J. Mod. Phys. C 11:881–890, 2000.

    Google Scholar 

  72. Xenos, M., G. Girdhar, Y. Alemu, J. Jesty, M. Slepian, S. Einav, and D. Bluestein. Device thrombogenicity emulator (DTE)—design optimization methodology for cardiovascular devices: a study in two bileaflet MHV designs. J. Biomech. 43:2400–2409, 2010.

    Article  Google Scholar 

  73. Yamaguchi, T., T. Ishikawa, Y. Imai, N. Matsuki, M. Xenos, Y. F. Deng, and D. Bluestein. Particle-based methods for multiscale modeling of blood flow in the circulation and in devices: challenges and future directions. Ann. Biomed. Eng. 38:1225–1235, 2010.

    Article  Google Scholar 

  74. Yin, W., Y. Alemu, K. Affeld, J. Jesty, and D. Bluestein. Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves. Ann. Biomed. Eng. 32:1058–1066, 2004.

    Article  Google Scholar 

  75. Yun, B. M., J. Wu, H. A. Simon, S. Arjunon, F. Sotiropoulos, C. K. Aidun, and A. P. Yoganathan. A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase. Ann. Biomed. Eng. 40:1468–1485, 2012.

    Article  Google Scholar 

  76. Zhang, D. D., D. E. Smith, D. A. Jack, and S. Montgomery-Smith. Numerical evaluation of single fiber motion for short-fiber-reinforced composite materials processing. J. Manuf. Sci. Eng. Trans. ASME. 133:051002–051009, 2011.

  77. Zhang, N., P. Zhang, W. Kang, D. Bluestein, and Y. F. Deng. Parameterizing the Morse potential for coarse-grained modeling of blood plasma. J. Comput. Phys. 257:726–736, 2014.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This publication was made possible by Grants from the National Institute of Health: NHLBI R21 HL096930-01A2 (DB) and NIBIB Quantum Award Implementation Phase II-U01 EB012487-0 (DB). This research utilized the HPC resource Sunway BlueLight MPP cluster at the National Supercomputing Center in Jinan, China.

Conflict of Interest

Peng Zhang, Chao Gao, Na Zhang, Marvin J. Slepian, Yuefan Deng, and Danny Bluestein declare that they have no conflicts of interest.

Ethical Standards

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Bluestein.

Additional information

Associate Editor Aleksander S Popel oversaw the review of this article.

Appendix A: Spatiotemporal Analytics at Multiple Scales

Appendix A: Spatiotemporal Analytics at Multiple Scales

Methods

The instantaneous properties of the platelet constituent particles are measured in simulations and they are averaged over a period of time (referred to as the time-averaging technique) and then over a surface volume (referred to as the space-averaging technique). The properties include the velocities and the stress tensors.

The temporal-averaging technique is to average a property \({\mathcal{A}}\) among successive observations over a finite time interval and it is designed for demonstrating a common trend in that interval. Suppose that \({\mathcal{A}}_{i} \left(0 \right)\) is the initial velocity of a particle i and \(\left\{{{\mathcal{A}}_{i} \left({j \cdot \delta t} \right)} \right\}_{j = 0}^{\alpha - 1}\) is a collection of α successive points in time. i simply stands for an index of the particle. The time-averaged property \({\mathcal{A}}_{{i\,{\text{time}}}}\) of the particle i in this interval is

$${\mathcal{A}}_{{i\,{\text{time}}}} = \frac{1}{n}\mathop \sum \limits_{j = 0}^{\alpha - 1} {\mathcal{A}}_{i} \left({j \cdot \delta t} \right)$$
(10)

Here, δt is the length of time interval between two successive steps and it is always a multiple of the propagator in simulation. α is the number of instantaneous observations in the succession. Naturally, a larger α implies a more common trend in a longer time interval and the opposite extrema present a very instantaneous behavior.

The spatial-averaging technique is to average a property over a surface volume and it is specially designed for smoothing the spatial relevant fluctuations. Let the total membrane particles form a set of \(\left\{{M_{k} \left({\varvec{r}_{k},{\mathcal{A}}_{k}} \right)} \right\}_{k = 1}^{K}\) where r k and \({\mathcal{A}}_{k}\) are the position and property of a particle k. For convenience, we introduce the set notations: the δ-neighborhood of a point positioned at p is denoted as D(p,δ) where δ is a positive number. A point positioned at q is said within D(p ) if \(\parallel\varvec{p} - \varvec{q}\parallel_{2} \le \delta\) and denoted as \(\varvec{q} \in D\left({\varvec{p},\delta} \right)\). The intersection D(pδ) ∩ {M k }is the set that contains all of the membrane particles that are also within the δ-neighborhood of point p. ϕ is an empty set. |A| is the number of elements in a set A.

The space-averaging technique involves two steps:

  • Step 1: Generate a collection of lattices \(\left\{{L_{i} \left({p_{i},{\bar{\mathcal{A}}}_{i}} \right)} \right\}_{i = 1}^{\beta}\) where \(\varvec{p}_{i}\) and \({\bar{\mathcal{A}}}_{i}\) are the position and unknown property associated with lattice L i . β = |L i | is the total number of lattices and the bar stands for the spatial relevant averaging. The collection of lattices forms the coverage of the entire platelet surface if and only if it satisfies: for each \(\varvec{r}_{k}\), there is a \(D\left({\varvec{p}_{i},\delta} \right)\) such that \(\varvec{r}_{k} \in D\left({\varvec{p}_{i},\delta} \right)\) and \(D\left({\varvec{p}_{i},\delta} \right) \cap \left\{{r_{k}} \right\} \ne \phi\) for any i.

  • Step 2: Calculate the property \({\mathcal{A}}_{i}\) for lattice L i as

  • $${\bar{\mathcal{A}}}_{i} = \frac{1}{{\omega_{i}}}\mathop \sum \limits_{{r_{k} \in D\left({p_{i},\delta} \right)}}^{{}} {\mathcal{A}}_{k}$$
    (11)

Here \(\omega_{i} = \left| {D\left({\varvec{p}_{i},\delta} \right) \cap \left\{{\varvec{r}_{k}} \right\}} \right| \ge 1\) and δ depends on the average distance of the nearest lattices.

In total, the temporal and spatial averaging techniques form the multiscale analytic scheme and the attention is paid to the consistency between the observed property \({\mathcal{A}}_{obs}\) and the spatiotemporal-averaged property \(\overline{{{\mathcal{A}}_{\text{time}}}}\).

$${\mathcal{A}}_{obs} \cong \overline{{{\mathcal{A}}_{\text{time}}}}$$
(12)

Configurations

We consider four coarsening configurations (Table A1) for the space-averaging technique. The figures are ordered from the finest to the coarsest grained levels.

Table A1 Different collections of lattices for the space-averaging technique

Results

Figure A1 shows the effects of temporal averaging on the platelet-flipping velocity magnitudes. In the legend, “nanosecond” means that we calculate the average magnitude of flipping velocities of the membranous particles every nanosecond (ns). Similarly, “10 ns” and “100 ns” mean the same calculations are performed every 10 and 100 ns, respectively. This figure illustrates the obvious disparity of the fluctuations of numeric values at varied temporal coarse-graining scales. For example, the instantaneous values at the very microscopic level showed the most flickering. Second, the microscopic values of the membrane system at varied temporal scales characterized the same macroscopic quality: the long-term trends. The spatiotemporal averaging technique is a useful method to convert microscopic information to macroscopic qualities for the multiscale modeling and demonstrate a clearer resolution for long-term observables

Figure A1
figure 18

The effect of temporal averaging on the flipping velocity magnitude

Different combinations of temporal and spatial coarse graining parameters would represent the same metadata with multiple-resolutions. Figures A2 and A3 present the analytic results for ts = 60 and 240 (dimensionless time) respectively. These results re-verify that the instantaneous velocity profile fluctuates very rapidly thanks to the high-frequency oscillations of the massive membrane particles and the profile becomes smoother as the instantaneous velocities are processed by the time-averaging and space-averaging techniques. A rigid platelet model is an extreme case of the coarsening as shown in Fig. A4. We observe that the velocity profile of a deformable model more resembles that of a rigid model, as the temporal coarsening method continues to a larger temporal scale. For instance, both of the models show the consistent phenomena that the high-velocity areas occur merely on the flipping edges while the central stripe has a relatively small flipping rate. Additionally, the spatial coarsening method characterized the “flickering” membrane fluctuations in certain degree, without using the very many particles. For example in Figs. A2 and A3, β = 1350 (bottom right subplot) renders the similar profile as using β = 19,675 (top right subplot), in particular at α = 10,000 (last columns).

Figure A2
figure 19

The velocity profiles of the case using different coarsening parameters (ts = 60)

Figure A3
figure 20

The velocity profiles of the case using different coarsening parameters (ts = 240)

Figure A4
figure 21

The velocity profiles of the rigid platelet model at (ts = 60) and (ts = 240)

Collectively, the results demonstrate: the rigid platelet model never can reflect the molecular-scale fluctuations of natural membranes owing to the complete stiffness. At the opposite extreme, an atomistic-scale simulation provides over detailed access to the spectrum of thermal fluctuations but its application demands the computing power. As a trade-off, the multiscale model does not only reflect the thermal fluctuations of the platelet particles but also maintains the computational feasibility.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Gao, C., Zhang, N. et al. Multiscale Particle-Based Modeling of Flowing Platelets in Blood Plasma Using Dissipative Particle Dynamics and Coarse Grained Molecular Dynamics. Cel. Mol. Bioeng. 7, 552–574 (2014). https://doi.org/10.1007/s12195-014-0356-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-014-0356-5

Keywords

Navigation