Skip to main content

Advertisement

Log in

Biomechanical Characterization of a Model of Noninvasive, Traumatic Anterior Cruciate Ligament Injury in the Rat

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The onset of post-traumatic osteoarthritis (PTOA) remains prevalent following traumatic joint injury such as anterior cruciate ligament (ACL) rupture, and animal models are important for studying the pathomechanisms of PTOA. Noninvasive ACL injury using the tibial compression model in the rat has not been characterized, and it may represent a more clinically relevant model than the common surgical ACL transection model. This study employed four loading profiles to induce ACL injury, in which motion capture analysis was performed, followed by quantitative joint laxity testing. High-speed, high-displacement loading repeatedly induces complete ACL injury, which causes significant increases in anterior-posterior and varus laxity. No loading protocol induced valgus laxity. Tibial internal rotation and anterior subluxation occurs up to the point of ACL failure, after which the tibia rotates externally as it subluxes over the femoral condyles. High displacement was more determinative of ACL injury compared to high speed. Low-speed protocols induced ACL avulsion from the femoral footprint whereas high-speed protocols caused either midsubstance rupture, avulsion, or a combination injury of avulsion and midsubstance rupture. This repeatable, noninvasive ACL injury protocol can be utilized in studies assessing PTOA or ACL reconstruction in the rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Altman, R., et al. Biomechanical and biochemical properties of dog cartilage in experimentally induced osteoarthritis. Ann. Rheum. Dis. 43:83–90, 1984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anderson, D. D., et al. Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J. Orthop. Res. 29:802–809, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Boden, B. P., et al. Mechanisms of anterior cruciate ligament injury. Orthopedics 23:573–578, 2000.

    CAS  PubMed  Google Scholar 

  4. Boden, B. P., et al. Noncontact anterior cruciate ligament injuries: mechanisms and risk factors. J. Am. Acad. Orthop. Surg. 18:520–527, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brophy, R. H., et al. Effect of short-duration low-magnitude cyclic loading versus immobilization on tendon-bone healing after ACL reconstruction in a rat model. J. Bone Joint Surg. 93:381–393, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brown, T. D., et al. Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J. Orthop. Trauma 20:739–744, 2006.

    Article  PubMed  Google Scholar 

  7. Buckwalter, J. A., and T. D. Brown. Joint injury, repair, and remodeling: roles in post-traumatic osteoarthritis. Clin. Orthop. Relat. Res. 423:7–16, 2004.

    Article  Google Scholar 

  8. Christiansen, B., et al. Musculoskeletal changes following non-invasive knee injury using a novel mouse model of post-traumatic osteoarthritis. Osteoarthr. Cartil. 20:773–782, 2012.

    Article  CAS  PubMed  Google Scholar 

  9. Dirschl, D. R., et al. Articular fractures. J. Am. Acad. Orthop. Surg. 12:416–423, 2004.

    Article  PubMed  Google Scholar 

  10. Gillquist, J., and K. Messner. Anterior cruciate ligament reconstruction and the long term incidence of gonarthrosis. Sports Med. 27:143–156, 1999.

    Article  CAS  PubMed  Google Scholar 

  11. Guilak, F., et al. Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis. J. Orthop. Res. 12:474–484, 1994.

    Article  CAS  PubMed  Google Scholar 

  12. Hashimoto, S., et al. Development and regulation of osteophyte formation during experimental osteoarthritis. Osteoarthr. Cartil. 10:180–187, 2002.

    Article  CAS  PubMed  Google Scholar 

  13. Jansen, H., et al. Effects of low-energy NMR on posttraumatic osteoarthritis: observations in a rabbit model. Arch. Orthop. Trauma Surg. 131:863–868, 2011.

    Article  PubMed  Google Scholar 

  14. Jansen, H., et al. Detection of vascular endothelial growth factor (VEGF) in moderate osteoarthritis in a rabbit model. Ann. Anat. 194:452–456, 2012.

    Article  CAS  PubMed  Google Scholar 

  15. Kadonishi, Y., et al. Acceleration of tendon–bone healing in anterior cruciate ligament reconstruction using an enamel matrix derivative in a rat model. J. Bone Joint Surg. Br. 94:205–209, 2012.

    Article  CAS  PubMed  Google Scholar 

  16. Koga, H., et al. Mechanisms for noncontact anterior cruciate ligament injuries knee joint kinematics in 10 injury situations from female team handball and basketball. Am. J. Sports Med. 38:2218–2225, 2010.

    Article  PubMed  Google Scholar 

  17. Lee, J. K., et al. Anterior cruciate ligament tears: MR imaging compared with arthroscopy and clinical tests. Radiology 166:861–864, 1988.

    Article  CAS  PubMed  Google Scholar 

  18. Levine, J. W., et al. Clinically relevant injury patterns after an anterior cruciate ligament injury provide insight into injury mechanisms. Am. J. Sports Med. 41:385–395, 2013.

    Article  PubMed  Google Scholar 

  19. Linko, E., et al. Surgical versus conservative interventions for anterior cruciate ligament ruptures in adults. Cochrane Database Syst. Rev. 2:CD001356, 2005.

    Google Scholar 

  20. Lockwood, K. A., et al. Comparison of loading rate-dependent injury modes in a murine model of post-traumatic osteoarthritis. J. Orthop. Res. 32:79–88, 2014.

    Article  PubMed  Google Scholar 

  21. Lohmander, L., et al. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 50:3145–3152, 2004.

    Article  CAS  PubMed  Google Scholar 

  22. Lohmander, L. S., et al. The long-term consequence of anterior cruciate ligament and meniscus injuries osteoarthritis. Am. J. Sports Med. 35:1756–1769, 2007.

    Article  PubMed  Google Scholar 

  23. Mankin, H., A. Grodzinsky, and J. A. Buckwalter. Articular cartilage and osteoarthritis. In: Orthopaedic Basic Science: Foundations of Clinical Practice, edited by T. Einhorn. Chicago, IL: American Academy of Orthopaedic Surgeons, 2007.

    Google Scholar 

  24. Martin, J., and J. Buckwalter. Post-traumatic osteoarthritis: the role of stress induced chondrocyte damage. Biorheology 43:517–521, 2006.

    CAS  PubMed  Google Scholar 

  25. Mazzocca, A. D., et al. Valgus medial collateral ligament rupture causes concomitant loading and damage of the anterior cruciate ligament. J. Knee Surg. 16:148–151, 2003.

    PubMed  Google Scholar 

  26. Meyer, E. G., and R. C. Haut. Excessive compression of the human tibio-femoral joint causes ACL rupture. J. Biomech. 38:2311–2316, 2005.

    Article  PubMed  Google Scholar 

  27. Meyer, E. G., and R. C. Haut. Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression. J. Biomech. 41:3377–3383, 2008.

    Article  PubMed  Google Scholar 

  28. Mifune, Y., et al. Tendon graft revitalization using adult anterior cruciate ligament (ACL)-derived CD34+ cell sheets for ACL reconstruction. Biomaterials 34:5476–5487, 2013.

    Article  CAS  PubMed  Google Scholar 

  29. Myklebust, G., and R. Bahr. Return to play guidelines after anterior cruciate ligament surgery. Br. J. Sports Med. 39:127–131, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Onur, T. S., et al. Joint instability and cartilage compression in a mouse model of posttraumatic osteoarthritis. J. Orthop. Res. 32:318–323, 2014.

    Article  PubMed  Google Scholar 

  31. Quatman, C. E., and T. E. Hewett. The anterior cruciate ligament injury controversy: is “valgus collapse” a sex-specific mechanism? Br. J. Sports Med. 43:328–335, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Quatman, C. E., et al. Preferential loading of the ACL compared with the MCL during landing a novel in sim approach yields the multiplanar mechanism of dynamic valgus during ACL injuries. Am. J. Sports Med. 42:177–186, 2013. doi:10.1177/0363546513506558.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Roos, H., et al. Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age. Osteoarthr. Cartil. 3:261–267, 1995.

    Article  CAS  PubMed  Google Scholar 

  34. Ruan, M. Z., et al. Quantitative imaging of murine osteoarthritic cartilage by phase-contrast micro-computed tomography. Arthritis Rheum. 65:388–396, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sankar, W. N., et al. Combined anterior cruciate ligament and medial collateral ligament injuries in adolescents. J. Pediatr. Orthop. 26:733–736, 2006.

    Article  PubMed  Google Scholar 

  36. Shin, C. S., A. M. Chaudhari, and T. P. Andriacchi. The effect of isolated valgus moments on ACL strain during single-leg landing: a simulation study. J. Biomech. 42:280–285, 2009.

    Article  PubMed  Google Scholar 

  37. Tang, Z., et al. Contributions of different intraarticular tissues to the acute phase elevation of synovial fluid MMP-2 following rat ACL rupture. J. Orthop. Res. 27:243–248, 2009.

    Article  CAS  PubMed  Google Scholar 

  38. Von Porat, A., E. M. Roos, and H. Roos. High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann. Rheum. Dis. 63:269–273, 2004.

    Article  Google Scholar 

  39. Wu, Y., et al. The profile of MMP and TIMP in injured rat ACL. Mol. Cell Biomech. 7:115–1124, 2009.

    Google Scholar 

  40. Yoon, K. H., J. H. Yoo, and K.-I. Kim. Bone contusion and associated meniscal and medial collateral ligament injury in patients with anterior cruciate ligament rupture. J. Bone Joint Surg. 93:1510–1518, 2011.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin C. Baker.

Additional information

Associate Editor Michael R. Torry oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maerz, T., Kurdziel, M.D., Davidson, A.A. et al. Biomechanical Characterization of a Model of Noninvasive, Traumatic Anterior Cruciate Ligament Injury in the Rat. Ann Biomed Eng 43, 2467–2476 (2015). https://doi.org/10.1007/s10439-015-1292-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1292-9

Keywords

Navigation