Skip to main content

Advertisement

Log in

Frequency-Dependence of Mechanically Stimulated Osteoblastic Calcification in Tissue-Engineered Bone In Vitro

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The effect of mechanical stimulation on osteogenesis remains controversial, especially with respect to the loading frequency that maximizes osteogenesis. Mechanical stimulation at an optimized frequency may be beneficial for the bone tissue regeneration to promote osteoblastic calcification. The objective of this study was to investigate the frequency-dependent effect of mechanical loading on osteoblastic calcification in the tissue-engineered bones in vitro. Tissue-engineered bones were constructed by seeding rat osteoblasts into a type I collagen sponge scaffold at a cell density of 1600 or 24,000 cells/mm3. Sinusoidal compressive deformation at the peak of 0.2% was applied to the tissue-engineered bones at 0.2, 2, 10, 20, 40, and 60 Hz for 3 min/day for 14 consecutive days. Optically-monitored calcium content started to increase on days 5–7 and reached the highest value at 2 Hz on day 14; however, no increase was observed at 0.2 Hz and in the control. Ash content measured after the mechanical stimulation also showed the highest at 2 Hz despite the differences in cell seeding density. It was concluded that mechanical stimulation at 2 Hz showed the highest promotional effect for osteogenesis in vitro among the frequencies selected in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Barbas, A., A. S. Bonnet, P. Lipinski, R. Pesci, and G. Dubois. Development and mechanical characterization of porous titanium bone substitutes. J. Mech. Behav. Biomed. Mater. 9:34–44, 2012.

    Article  CAS  PubMed  Google Scholar 

  2. Cordell, J. M., M. L. Vogl, and A. J. Wagoner Johnson. The influence of micropore size on the mechanical properties of bulk hydroxyapatite and hydroxyapatite scaffolds. J. Mech. Behav. Biomed. Mater. 2:560–570, 2009.

    Article  PubMed  Google Scholar 

  3. Dado, D., and S. Levenberg. Cell-scaffold mechanical interplay within engineered tissue. Semin. Cell Dev. Biol. 20:656–664, 2009.

    Article  CAS  PubMed  Google Scholar 

  4. Dumas, V., A. Perrier, L. Malaval, N. Laroche, A. Guignandon, L. Vico, and A. Rattner. The effect of dual frequency cyclic compression on matrix deposition by osteoblast-like cells grown in 3D scaffolds and on modulation of VEGF variant expression. Biomaterials 30:3279–3288, 2009.

    Article  CAS  PubMed  Google Scholar 

  5. Duncan, R. L., and C. H. Turner. Mechanotransduction and the functional response of bone to mechanical strain. Calcif. Tissue Int. 57:344–358, 1995.

    Article  CAS  PubMed  Google Scholar 

  6. Ehrlich, P. J., and L. E. Lanyon. Mechanical strain and bone cell function: a review. Osteoporos. Int. 13:688–700, 2002.

    Article  CAS  PubMed  Google Scholar 

  7. Frost, H. M. Perspectives: the role of changes in mechanical usage set points in the pathogenesis of osteoporosis. J. Bone Miner. Res. 7:253–261, 1992.

    Article  CAS  PubMed  Google Scholar 

  8. Hench, L. L. Bioceramics. J. Am. Ceram. Soc. 81:1705–1727, 1998.

    Article  CAS  Google Scholar 

  9. Holy, C. E., M. S. Shoichet, and J. E. Davies. Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period. J. Biomed. Mater. Res. 51:376–382, 2000.

    Article  CAS  PubMed  Google Scholar 

  10. Hsieh, Y. F., and C. H. Turner. Effects of loading frequency on mechanically induced bone formation. J. Bone Miner. Res. 16:918–924, 2001.

    Article  CAS  PubMed  Google Scholar 

  11. Isaksson, H., T. Harjula, A. Koistinen, J. Iivarinen, K. Seppanen, J. P. Arokoski, P. A. Brama, J. S. Jurvelin, and H. J. Helminen. Collagen and mineral deposition in rabbit cortical bone during maturation and growth: effects on tissue properties. J. Orthop. Res. 28:1626–1633, 2010.

    Article  CAS  PubMed  Google Scholar 

  12. Jagodzinski, M., and C. Krettek. Effect of mechanical stability on fracture healing—an update. Injury 38(Suppl 1):S3–S10, 2007.

    Article  PubMed  Google Scholar 

  13. Kaspar, D., W. Seidl, C. Neidlinger-Wilke, A. Beck, L. Claes, and A. Ignatius. Proliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain. J. Biomech. 35:873–880, 2002.

    Article  PubMed  Google Scholar 

  14. Maniatopoulos, C., J. Sodek, and A. H. Melcher. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res. 254:317–330, 1988.

    Article  CAS  PubMed  Google Scholar 

  15. Mizuno, M., R. Fujisawa, and Y. Kuboki. Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction. J. Cell Physiol. 184:207–213, 2000.

    Article  CAS  PubMed  Google Scholar 

  16. Oxlund, B. S., G. Ortoft, T. T. Andreassen, and H. Oxlund. Low-intensity, high-frequency vibration appears to prevent the decrease in strength of the femur and tibia associated with ovariectomy of adult rats. Bone 32:69–77, 2003.

    Article  CAS  PubMed  Google Scholar 

  17. Parfitt, A. M. The cellular basis of bone turnover and bone loss: a rebuttal of the osteocytic resorption–bone flow theory. Clin. Orthop. Relat. Res. 127:236–247, 1977.

    PubMed  Google Scholar 

  18. Pre, D., G. Ceccarelli, L. Benedetti, G. Magenes, and M. G. De Angelis. Effects of low-amplitude, high-frequency vibrations on proliferation and differentiation of SAOS-2 human osteogenic cell line. Tissue Eng. Part C Methods 15:669–679, 2009.

    Article  CAS  PubMed  Google Scholar 

  19. Rosenberg, N., M. Levy, and M. Francis. Experimental model for stimulation of cultured human osteoblast-like cells by high frequency vibration. Cytotechnology 39:125–130, 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Rubin, C. T., and K. J. McLeod. Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain. Clin. Orthop. Relat. Res. 298:165–174, 1994.

    PubMed  Google Scholar 

  21. Rubin, C. T., K. J. McLeod, and S. D. Bain. Functional strains and cortical bone adaptation: epigenetic assurance of skeletal integrity. J. Biomech. 23:43–54, 1990.

    Article  PubMed  Google Scholar 

  22. Sittichockechaiwut, A., A. M. Scutt, A. J. Ryan, L. F. Bonewald, and G. C. Reilly. Use of rapidly mineralising osteoblasts and short periods of mechanical loading to accelerate matrix maturation in 3D scaffolds. Bone 44:822–829, 2009.

    Article  PubMed  Google Scholar 

  23. Tachibana, K., and S. M. Tanaka. In vitro calcification of tissue engineered bone promoted by mechanical stimulation—effect of cell seeding density and scaffold material. Jpn. J. Clin. Biomech. 32:33–38, 2011.

    Google Scholar 

  24. Tanaka, S. M. Mechanical loading promotes calcification of tissue-engineered bone in vitro. J. Biomech. Sci. Eng. 5:635–645, 2010.

    Article  Google Scholar 

  25. Tanaka, S. M. Intracellular Ca2+ responses of 3D-cultured osteoblasts to dynamic loading. J. Biomech. Sci. Eng. 7:318–327, 2012.

    Article  Google Scholar 

  26. Tanaka, S. M., H. B. Sun, R. K. Roeder, D. B. Burr, C. H. Turner, and H. Yokota. Osteoblast responses one hour after load-induced fluid flow in a three-dimensional porous matrix. Calcif. Tissue Int. 76:261–271, 2005.

  27. Turner, C. H., T. Yoshikawa, M. R. Forwood, T. C. Sun, and D. B. Burr. High frequency components of bone strain in dogs measured during various activities. J. Biomech. 28:39–44, 1995.

    Article  CAS  PubMed  Google Scholar 

  28. Volkmer, E., I. Drosse, S. Otto, A. Stangelmayer, M. Stengele, B. C. Kallukalam, W. Mutschler, and M. Schieker. Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone. Tissue Eng. Part A 14:1331–1340, 2008.

    Article  CAS  PubMed  Google Scholar 

  29. Warburton, D. E. R., C. W. Nicol, and S. S. D. Bredin. Health benefits of physical activity: the evidence. CMAJ 174:801–809, 2006.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Weiner, S., and H. D. Wagner. The material bone: structure-mechanical function relations. Annu. Rev. Mater. Sci. 28:271–298, 1998.

    Article  CAS  Google Scholar 

  31. Williams, P. A., and S. Saha. The electrical and dielectric properties of human bone tissue and their relationship with density and bone mineral content. Ann. Biomed. Eng. 24:222–233, 1996.

    Article  CAS  PubMed  Google Scholar 

  32. Wilson, C. E., W. J. Dhert, C. A. Van Blitterswijk, A. J. Verbout, and J. D. De Bruijn. Evaluating 3D bone tissue engineered constructs with different seeding densities using the alamarBlue assay and the effect on in vivo bone formation. J. Mater. Sci. Mater. Med. 13:1265–1269, 2002.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was partly supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (C), 20560070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo M. Tanaka.

Additional information

Associate Editor Cheng Dong oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, S.M., Tachibana, K. Frequency-Dependence of Mechanically Stimulated Osteoblastic Calcification in Tissue-Engineered Bone In Vitro . Ann Biomed Eng 43, 2083–2089 (2015). https://doi.org/10.1007/s10439-014-1241-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1241-z

Keywords

Navigation