Skip to main content
Log in

The electrical and dielectric properties of human bone tissue and their relationship with density and bone mineral content

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this study, we examined the electrical properties of wet human cortical and cancellous bone tissue from distal tibia and their relationship to the wet, dry, and ash tissue densities. The resistivity and specific capacitance of both cortical and cancellous bone were determined for different frequencies and directions (orientation). The wet, dry, and ash tissue densities of the bone samples were measured, and the ash content was determined. Correlation and regression analysis was used to examine the possible relationships among the electrical properties and the tissue densities for cancellous and cortical bone specimens separately as well as for all of the bone specimens combined. Highly significant positive correlations (p<0.001) were found between the wet density of bone and the dry and ash densities. The specific capacitance of the cancellous bone specimens in all three orthogonal directions showed significant (p<0.01) positive correlations with the wet, dry, and ash densities. In general, the specific capacitance depended more on density for all bone specimens, and only a weak relationship was found between the resistivity of human cortical bone and density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bassett, C. A. L., S. N. Mitchell, and S. R. Gaston. Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields.J. Bone Joint Surg. 63-A(4):511–523, 1981.

    Google Scholar 

  2. Bassett, C. A. L., A. A. Pilla, E. I. Mitchell, and R. E. Booth. Repair of non-unions by pulsing electromagnetic fields.Acta Ortho. Belgica 44:706–724, 1978.

    CAS  Google Scholar 

  3. Brighton, C. T., Z. B. Friedenberg, E. I. Mitchell, and R. E. Booth. Treatment of nonunion with constant direct current.Clin. Orthop. 124:106–123, 1977.

    PubMed  Google Scholar 

  4. Brighton, C. T., G. T. Tadduni, S. R. Goll, and S. R. Pollack. Treatment of denervation/-disuse osteoporosis in the rat with a capacitively coupled electrical signal: effects of bone formation and bone resorption.J. Orthop. Res. 6(5): 676–684, 1988.

    Article  PubMed  CAS  Google Scholar 

  5. Cappanna, R., D. Donati, C. Masetti, M. Manfrini, A. Panozzo, R. Cadossi, and M. Campanacci. Effect of electromagnetic fields on patients undergoing massive bone grafts following bone tumor resection.Clin. Orthop. Rel. Res. 306:213–221, 1994.

    Google Scholar 

  6. Carter, D. R., and W. C. Hayes. Bone compressive strength: the influence of density and strain rate.Science 194:1174–1176, 1976.

    Article  PubMed  CAS  Google Scholar 

  7. Carter, D. R., and W. C. Hayes. The compressive behavior of bone as a two-phase porous structure.J. Bone Joint Surg. 59-A:954–962, 1977.

    Google Scholar 

  8. Chakkalakal, D. A., and M. W. Johnson. Electrical properties of compact bone.Clin. Orthop. Rel. Res. 161:133–145, 1981.

    Google Scholar 

  9. Chakkalakal, D. A., M. W. Johnson, R. A. Harper, and J. L. Katz. Dielectric properties of fluid-saturated bone.IEEE Trans. Biomed. Eng. 27(2):95–100, 1980.

    Article  PubMed  CAS  Google Scholar 

  10. Chen, I. I. H., and S. Saha. Analysis of current distribution in bone produced by pulsed electro-magnetic field stimulation of bone.Biomat. Art Cells Art. Org. 15(4):737–744, 1988.

    CAS  Google Scholar 

  11. Cundy, P. J., and D. C. Paterson. A ten-year review of treatment of delayed union with an implanted bone growth stimulator.Clin. Orthop. 259:216–222, 1990.

    PubMed  Google Scholar 

  12. Davies, R. J., J. Renah, D. Kaplan, R. D. Juncosa, C. Pempinello, H. Asburn, and M. M. Sedwitz. Epithelial impedance analysis in experimentally induced colon cancer.Biophys. J. 52:783–790, 1987.

    PubMed  CAS  Google Scholar 

  13. De Mercato, G., and F. J. Garcia-Sanchez. Dielectric properties of fluid-saturated bone: a comparison between diaphysis and epiphysis.Med. Biol. Eng. Comput. 26:313–316, 1988.

    Article  PubMed  Google Scholar 

  14. De Mercato, G., and F. J. Garcia-Sanchez. Variation of the electric properties along the diaphysis of bovine femoral bone.Med. Biol. Eng. Comput. 29:441–446, 1991.

    Article  PubMed  Google Scholar 

  15. De Mercato, G., and F. J. Garcia-Sanchez. Correlation between low-frequency electric conductivity and permittivity in the diaphysis of bovine femoral bone.IEEE Trans. Biomed. Eng. 39:523–525, 1992.

    Article  PubMed  Google Scholar 

  16. Ducheyne, P., L. Y. Ells, S. R. Pollack, D. Pienkowski, and J. M. Cuckler. Field distributions in the rat tibia with and without a porous implant during electrical stimulation: a parametric modeling.IEEE Trans. Biomed. Eng. 39(11): 1168–1178, 1992.

    Article  PubMed  CAS  Google Scholar 

  17. Geddes, L. A., and L. E. Baker. The specific resistance of biological material: a compendium of data for the biomedical engineer and physiologist.Med. Biol. Eng. 5:271–293, 1967.

    Article  PubMed  CAS  Google Scholar 

  18. Gong, J. K., J. S. Arnold, and S. H. Cohn. Composition of trabecular and cortical bone.Anat. Rec. 149:325–332, 1964.

    Article  PubMed  CAS  Google Scholar 

  19. Hancox, N. M.Biology of Bone. London: Cambridge University, 1972, pp. 24–49.

    Google Scholar 

  20. Hayes, W. C. Biomechanics of cortical and trabecular bone: implications for assessment of fracture risk. InBasic Orthopaedic Biomechanics, edited by V. C. Mow and W. C. Hayes. New York: Raven Press, 1991, pp. 93–142.

    Google Scholar 

  21. Heppenstall, R. B. Constant direct-current treatment for established nonunion of the tibia.Clin. Orthop. Rel. Res. 178:179–184, 1983.

    Google Scholar 

  22. Huiskes, R. Biomechanics of artificial-joint fixation. In:Basic Orthopaedic Biomechanics, edited by V. C. Mow and W. C. Hayes. New York: Raven Press, 1991, pp. 375–442.

    Google Scholar 

  23. Kaplan, F. S., W. C. Hayes, T. M. Keaveny, A. Boskey, T. A. Einhorn, and J. P. Iannotti. Form, and function of bone. In:Orthopedic Basic Science, edited by S. R. Simon. Rosemont, IL: American Academy of Orthopedic Surgery, 1994, pp. 172–189.

    Google Scholar 

  24. Keyak, J. H., I. Y. Lee, and H. B. Skinner. Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures.J. Biomed. Mat. Res. 28: 1329–1336, 1994.

    Article  CAS  Google Scholar 

  25. Kosterich, J. D., K. R. Foster, and S. R. Pollack. Dielectric permittivity and electrical conductivity of fluid saturated bone.IEEE Trans. Biomed. Eng. 30(2):81–86, 1983.

    Article  PubMed  CAS  Google Scholar 

  26. Kosterich, J. D., K. R. Foster, and S. R. Pollack. Dielectric properties of fluid-saturated bone—the effect of variation in conductivity of imersion fluid.IEEE Trans. Biomed. Eng. 31(4):369–373, 1984.

    Article  PubMed  CAS  Google Scholar 

  27. Lakes, R. S., R. A. Harper, and J. L. Katz. Dielectric relaxation in cortical bone.J. Appl. Phys. 48:808–811, 1977.

    Article  Google Scholar 

  28. Liboff, A. R., R. A. Rinaldi, L. S. Lavine, and M. H. Shamos. On electrical conduction in living bone.Clin. Orthop. 106:330–335, 1975.

    Article  PubMed  Google Scholar 

  29. Martin, R. B. Comparison of capacitive and inductive bone stimulation devices.Ann. Biomed. Eng. 7:387–409, 1979.

    Article  PubMed  CAS  Google Scholar 

  30. Otter, M., S. Goheen, and W. S. Williams. Streaming potentials in chemically modified bone.J. Orthop. Res. 6: 346–359, 1988.

    Article  PubMed  CAS  Google Scholar 

  31. Pethig, R.Dielectric and Electronic Properties of Biological Materials. New York: John Wiley & Sons, 1979, 376 pp

    Google Scholar 

  32. Pethig, R. Dielectric properties of body tissues.Clin. Phys. Physiol. Meas. 8:5–12, 1987.

    Article  PubMed  Google Scholar 

  33. Pethig, R., and D. B. Kell. The passive electrical properties of biological systems: their significance in physiology, biophysics, and biotechnology (review article).Phys. Med. Biol. 32(8):933–970, 1987.

    Article  PubMed  CAS  Google Scholar 

  34. Reddy, G. N., and S. Saha. A differential method for measuring impedance properties of bone.J. Bioelec. 1(2):173–194, 1982.

    Google Scholar 

  35. Reddy, G. N., and S. Saha. Electrical and dielectric properties of wet bone as a function of frequency.IEEE Trans. Biomed. Eng. 31:296–302, 1984.

    Article  PubMed  CAS  Google Scholar 

  36. Reinish, G. B., and A. S. Nowick. Effect of moisture on the electrical properties of bone.J. Electrochem. Soc. 123(10):1452–1455, 1976.

    Article  Google Scholar 

  37. Rubin, C. T., K. J. McLeod, and L. E. Lanyon. Prevention of osteoporosis by pulsed electromagnetic fields.J. Bone Joint Surg. 71-A(3):411–417, 1989.

    Google Scholar 

  38. Saha, S., G. N. Reddy, and J. A. Albright. Factors affecting the measurement of bone impedance.Med. Biol. Eng. Comput. 22:123–129, 1984.

    Article  PubMed  CAS  Google Scholar 

  39. Saha, S., and P. A. Williams. Effect of various storage methods on the dielectric properties of compact bone.Med. Biol. Eng. Comput. 26:199–202, 1988.

    Article  PubMed  CAS  Google Scholar 

  40. Saha, S., and P. A. Williams. Electric and dielectric properties of wet human cancellous bone as a function of frequency.Ann. Biomed. Eng. 17:143–158, 1989.

    Article  PubMed  CAS  Google Scholar 

  41. Saha, S., and P. A. Williams. Electric and dielectric properties of wet human cortical bone as a function of frequency.IEEE Trans. Biomed. Eng. 39:1298–1304, 1992.

    Article  PubMed  CAS  Google Scholar 

  42. Saha, S., and P. A. Williams. Comparison of the electrical and dielectric behavior of wet human cortical and cancellous bone tissue from the distal tibia.J. Orthop. Res. 13:524–532, 1995.

    Article  PubMed  CAS  Google Scholar 

  43. Saha, S. P. A. Williams, D. V. Rai, and J. A. Albright. Electrical properties of demineralized bone, Digest of Papers, Eighth Southern Biomedical Engineering Conference, pp. 147, 1989 (abstract inBiomet. Artif. Cells Artif. Organs 17(4):456, 1989).

  44. Schwan, H. P. Dielectric properties of cells and tissues. In:Interactions Between Electromagnetic Fields and Cells edited by A. Chiabrera, C. Nicolini, and H. P. Schwan, New York: Plenum Press, 1985, XXX pp.

    Google Scholar 

  45. Sharrard, W. J. W. A double-blind trial of pulsed electromagnetic fields for delayed union of tibial fractures.J. Bone Joint Surg. 72-B(3):347–355, 1990.

    Google Scholar 

  46. Singh, S., and J. Behari. Frequency dependence of electrical properties of human bone.J. Bioelec. 3:347–356, 1984.

    Google Scholar 

  47. Singh, S., and S. Saha. Bone density measurements: a preliminary study. Biomedical Engineering III Recent Developments, Proceedings of the Third Southern Biomedical Engineering Conference, 1984, pp. 79–81.

  48. Singh, S., and S. Saha. Electrical properties, of bone: a review.Clin. Orthop. Rel. Res. 186:249–271, 1984.

    Google Scholar 

  49. Skerry, T. M., M. J. Pead, and L. E. Lanyon. Modulation of bone loss during disuse by pulsed electromagnetic fields.J. Orthop. Res. 9(4):600–608, 1991.

    Article  PubMed  CAS  Google Scholar 

  50. Smith, S. R., and K. R. Foster. Dielectric properties of low-water-content tissues.Phys. Med. Biol. 30(9):965–973, 1985.

    Article  PubMed  CAS  Google Scholar 

  51. Swanson, G. T., and J. F. Lafferty. Electrical properties of bone as a function of age, immobilization, and vibration.J. Biomech. 5:261–266, 1972.

    Article  PubMed  CAS  Google Scholar 

  52. Timmins, P. A., and J. C. Wall. Review: bone water.Calcif. Tiss. Res. 23:1–5, 1977.

    Article  CAS  Google Scholar 

  53. Woo, J. W., P. Hua, J. G. Webster, and W. J. Tompkins, Measuring lung resistivity using electrical impedance tomography.IEEE Trans. Biomed. Eng. 39:756–760, 1992.

    Article  PubMed  CAS  Google Scholar 

  54. Yorkey, T. J., J. G. Webster, and W. J. Tompkins, Comparing reconstruction algorithms for electrical impedance tomography.IEEE Trans. Biomed. Eng. 34:843–852, 1987.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Presented in part at the 13th Annual IEEE EMBS Conference held in Orlando, Florida, Oct. 31–Nov. 3, 1991, and at the 14th Annual Meeting of the Society for Physical Regulation in Biology and Medicine held in Arlington, Virginia, Oct. 13–16, 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, P.A., Saha, S. The electrical and dielectric properties of human bone tissue and their relationship with density and bone mineral content. Ann Biomed Eng 24, 222–233 (1996). https://doi.org/10.1007/BF02667351

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02667351

Keywords

Navigation