Skip to main content
Log in

Computational Modeling of Pathophysiologic Responses to Exercise in Fontan Patients

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Reduced exercise capacity is nearly universal among Fontan patients. Although many factors have emerged as possible contributors, the degree to which each impacts the overall hemodynamics is largely unknown. Computational modeling provides a means to test hypotheses of causes of exercise intolerance via precisely controlled virtual experiments and measurements. We quantified the physiological impacts of commonly encountered, clinically relevant dysfunctions introduced to the exercising Fontan system via a previously developed lumped-parameter model of Fontan exercise. Elevated pulmonary arterial pressure was observed in all cases of dysfunction, correlated with lowered cardiac output (CO), and often mediated by elevated atrial pressure. Pulmonary vascular resistance was not the most significant factor affecting exercise performance as measured by CO. In the absence of other dysfunctions, atrioventricular valve insufficiency alone had significant physiological impact, especially under exercise demands. The impact of isolated dysfunctions can be linearly summed to approximate the combined impact of several dysfunctions occurring in the same system. A single dominant cause of exercise intolerance was not identified, though several hypothesized dysfunctions each led to variable decreases in performance. Computational predictions of performance improvement associated with various interventions should be weighed against procedural risks and potential complications, contributing to improvements in routine patient management protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

APVR:

Abnormal pulmonary vascular response

AV:

Atrio-ventricular

AVB:

1st degree AV block

AVVI:

AV valve insufficiency

ChI:

Chronotropic insufficiency

CO:

Cardiac output in L/min

DR:

Disordered respiration

DiasD:

Diastolic dysfunction

MET:

Metabolic equivalent in units of 3.5 mL O2 kg−1 min−1

PA:

Pulmonary arterial

PVR:

Pulmonary vascular resistance

SysD:

Systolic dysfunction

SV:

Stroke volume

References

  1. Akagi, T., L. N. Benson, M. Green, J. Ash, D. L. Gilday, W. G. Williams, and R. M. Freedom. Ventricular performance before and after fontan repair for univentricular atrioventricular connection: angiographic and radionuclide assessment. J. Am. Coll. Cardiol. 20:920–926, 1992.

    Article  CAS  PubMed  Google Scholar 

  2. Baretta, A., C. Corsini, A. L. Marsden, I. E. Vignon-Clementel, T.-Y. Hsia, G. Dubini, F. Migliavacca, and G. Pennati. Respiratory effects on hemodynamics in patient-specific cfd models of the fontan circulation under exercise conditions. Eur. J. Mech. B 35:61–69, 2012.

    Article  Google Scholar 

  3. Brooker, J., E. Alderman, and D. Harrison. Alterations in left-ventricular volumes induced by valsalva maneuver. Br. Heart J. 36:713–718, 1974.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Buda, A. J., M. R. Pinsky, N. B. Ingels, Jr., G. T. Daughters, E. B. Stinson, and E. L. Alderman. Effect of intrathoracic pressure on left ventricular performance. N. Engl. J. Med. 301:453–459, 1979.

    Article  CAS  PubMed  Google Scholar 

  5. Damato, A. N., S. H. Lau, R. Helfant, E. Stein, R. D. Patton, B. J. Scherlag, and W. D. Berkowitz. A study of heart block in man using his bundle recordings. Circulation 39:297–305, 1969.

    Article  CAS  PubMed  Google Scholar 

  6. Del Torso, S., M. J. Kelly, V. Kalff, and A. W. Venables. Radionuclide assessment of ventricular contraction at rest and during exercise following the fontan procedure for either tricuspid atresia or single ventricle. Am. J. Cardiol. 55:1127–1132, 1985.

    Article  PubMed  Google Scholar 

  7. Diller, G., A. Giardini, K. Dimopoulos, G. Gargiulo, J. Muller, G. Derrick, G. Giannakoulas, S. Khambadkone, A. Lammers, F. Picchio, M. Gatzoulis, and A. Hager. Predictors of morbidity and mortality in contemporary fontan patients: results from a multicenter study including cardiopulmonary exercise testing in 321 patients. Eur. Heart J. 31:3073–3083, 2010.

    Article  PubMed  Google Scholar 

  8. Driscoll, D. J., G. K. Danielson, F. J. Puga, H. V. Schaff, C. T. Heise, and B. A. Staats. Exercise tolerance and cardiorespiratory response to exercise after the fontan operation for tricuspid atresia or functional single ventricle. J. Am. Coll. Cardiol. 7:1087–1094, 1986.

    Article  CAS  PubMed  Google Scholar 

  9. Durongpisitkul, K., D. J. Driscoll, D. W. Mahoney, P. C. Wollan, C. D. Mottram, F. J. Puga, and G. K. Danielson. Cardiorespiratory response to exercise after modified fontan operation: determinants of performance. J. Am. Coll. Cardiol. 29:785–790, 1997.

    Article  CAS  PubMed  Google Scholar 

  10. Gersony, W. Fontan operation after 3 decades - what we have learned. Circulation 117:13–15, 2008.

    Article  PubMed  Google Scholar 

  11. Gewillig, M., S. C. Brown, B. Eyskens, R. Heying, J. Ganame, W. Budts, A. La Gerche, and M. Gorenflo. The fontan circulation: who controls cardiac output? Interact. CardioVasc. Thorac. Surg. 10:428–433, 2010.

    Article  PubMed  Google Scholar 

  12. Gewillig, M. H., U. R. Lundström, C. Bull, R. K. Wyse, and J. E. Deanfield. Exercise responses in patients with congenital heart disease after fontan repair: patterns and determinants of performance. J. Am. Coll. Cardiol. 15:1424–1432, 1990.

    Article  CAS  PubMed  Google Scholar 

  13. Goldman, L., and A. I. Schafer. Goldman’s Cecil Medicine, Chap. 5. Amsterdam: Elsevier, 2012.

    Google Scholar 

  14. Grigioni, F., M. Enriquez-Sarano, K. Zehr, K. Bailey, and A. Tajik. Ischemic mitral regurgitation - long-term outcome and prognostic implications with quantitative doppler assessment. Circulation 103:1759–1764, 2001.

    Article  CAS  PubMed  Google Scholar 

  15. Grossi, E., G. Crooke, P. Digiorgi, C. Schwartz, U. Jorde, R. Applebaum, G. Ribakove, A. Galloway, J. Grau, and S. Colvin. Impact of moderate functional mitral insufficiency in patients undergoing surgical revascularization. Circulation 114:I573–I576, 2006.

    Article  PubMed  Google Scholar 

  16. Hardt, S., S. Yazdi, A. Bauer, A. Filusch, G. Korosoglou, A. Hansen, R. Bekeredjian, P. Ehlermann, A. Remppis, H. Katus, and H. Kuecherer. Immediate and chronic effects of av-delay optimization in patients with cardiac resynchronization therapy. Int. J. Cardiol. 115:318–325, 2007.

    Article  PubMed  Google Scholar 

  17. Hsia, T., S. Khambadkone, A. Redington, F. Migliavacca, J. Deanfield, and M. De Leval. Effects of respiration and gravity on infradiaphragmatic venous flow in normal and fontan patients. Circulation 102:148–153, 2000.

    Google Scholar 

  18. Koelling, T., K. Aaronson, R. Cody, D. Bach, and W. Armstrong. Prognostic significance of mitral regurgitation and tricuspid regurgitation in patients with left ventricular systolic dysfunction. Am. Heart J. 144:524–529, 2002.

    Article  PubMed  Google Scholar 

  19. Kung, E., A. Baretta, C. Baker, G. Arbia, G. Biglino, C. Corsini, S. Schievano, I. E. Vignon-Clementel, G. Dubini, G. Pennati, A. Taylor, A. Dorfman, A. M. Hlavacek, A. L. Marsden, T.-Y. Hsia, and F. Migliavacca. Predictive modeling of the virtual hemi-fontan operation for second stage single ventricle palliation: two patient-specific cases. J. Biomech. 46:423–429, 2013.

    Article  PubMed  Google Scholar 

  20. Kung, E., G. Pennati, F. Migliavacca, T.-Y. Hsia, R. S. Figliola, A. Marsden, and A. Giardini. A simulation protocol for exercise physiology in fontan patients using a closed-loop lumped-parameter model. J. Biomech. Eng. 136(8):081007, 2014.

    Article  Google Scholar 

  21. Lamas, G., G. Mitchell, G. Flaker, S. Smith, B. Gersh, L. Basta, L. Moye, E. Braunwald, and M. Pfeffer. Clinical significance of mitral regurgitation after acute myocardial infarction. Circulation 96:827–833, 1997.

    Article  CAS  PubMed  Google Scholar 

  22. Marsden, A. L., A. J. Bernstein, V. M. Reddy, S. C. Shadden, R. L. Spilker, F. P. Chan, C. A. Taylor, and J. A. Feinstein. Evaluation of a novel y-shaped extracardiac fontan baffle using computational fluid dynamics. J. Thorac. Cardiovasc. Surg. 137:394–403, 2009.

    Article  PubMed  Google Scholar 

  23. Marsden, A. L., I. E. Vignon-Clementel, F. P. Chan, J. A. Feinstein, and C. A. Taylor. Effects of exercise and respiration on hemodynamic efficiency in cfd simulations of the total cavopulmonary connection. Ann. Biomed. Eng. 35:250–263, 2007.

    Article  PubMed  Google Scholar 

  24. Migliavacca, F., R. Balossino, G. Pennati, G. Dubini, T. Y. Hsia, M. R. De Leval, and E. L. Bove. Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery. J. Biomech. 39:1010–1020, 2006.

    Article  PubMed  Google Scholar 

  25. Morgan, B., W. Martin, T. Hornbein, and E. Crawford. Gunthero.Wg. Hemodynamic effects of intermittent positive pressure respiration. Anesthesiology 27:584–590, 1966.

    Article  CAS  PubMed  Google Scholar 

  26. Paridon, S. M., P. D. Mitchell, S. D. Colan, R. V. Williams, A. Blaufox, J. S. Li, R. Margossian, S. Mital, J. Russell, J. Rhodes, and P. H. N. Investigators. A cross-sectional study of exercise performance during the first 2 decades of life after the fontan operation. J. Am. Coll. Cardiol. 52:99–107, 2008.

    Article  PubMed  Google Scholar 

  27. Pekkan, K., B. Whited, K. Kanter, S. Sharma, D. De Zelicourt, K. Sundareswaran, D. Frakes, J. Rossignac, and A. P. Yoganathan. Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM). Med. Biol. Eng. Comput. 46:1139–1152, 2008.

    Article  PubMed  Google Scholar 

  28. Reeves, J., J. Linehan, and K. Stenmark. Distensibility of the normal human lung circulation during exercise. Am. J. Physiol. Lung Cell. Mol. Physiol. 288:L419–L425, 2005.

    Article  CAS  PubMed  Google Scholar 

  29. Sankaran, S., M. Moghadam, A. Kahn, E. Tseng, J. Guccione, and A. Marsden. Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery. Ann. Biomed. Eng. 40:2228–2242, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Schroder, J., M. Williams, J. Hata, L. Muhlbaier, M. Swaminathan, J. Mathew, D. Glower, C. O’connor, P. Smith, and C. Milano. Impact of mitral valve regurgitation evaluated by intraoperative transesophageal echocardiography on long-term outcomes after coronary artery bypass grafting. Circulation 112:I293–I298, 2005.

    PubMed  Google Scholar 

  31. Senzaki, H., C. Chen, and D. Kass. Single-beat estimation of end-systolic pressure-volume relation in humans - a new method with the potential for noninvasive application. Circulation 94:2497–2506, 1996.

    Article  CAS  PubMed  Google Scholar 

  32. Stickland, M. K., R. C. Welsh, S. R. Petersen, J. V. Tyberg, W. D. Anderson, R. L. Jones, D. A. Taylor, M. Bouffard, and M. J. Haykowsky. Does fitness level modulate the cardiovascular hemodynamic response to exercise? J. Appl. Physiol. 100:1895–1901, 2006.

    Article  CAS  PubMed  Google Scholar 

  33. Sundareswaran, K. S., K. Pekkan, L. P. Dasi, K. Whitehead, S. Sharma, K. R. Kanter, M. A. Fogel, and A. P. Yoganathan. The total cavopulmonary connection resistance: a significant impact on single ventricle hemodynamics at rest and exercise. Am. J. Physiol. Heart Circ. Physiol. 295:H2427–H2435, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Szabó, G., V. Buhmann, A. Graf, S. Melnitschuk, S. Bährle, C. F. Vahl, and S. Hagl. Ventricular energetics after the fontan operation: contractility-afterload mismatch. J. Thorac. Cardiovasc. Surg. 125:1061–1069, 2003.

    Article  PubMed  Google Scholar 

  35. Takken, T., M. H. Tacken, A. C. Blank, E. H. Hulzebos, J. L. Strengers, and P. J. Helders. Exercise limitation in patients with fontan circulation: a review. J. Cardiovasc. Med. (Hagerstown) 8:775–781, 2007.

    Article  Google Scholar 

  36. Taylor, C. A., M. T. Draney, J. P. Ku, D. Parker, B. N. Steele, K. Wang, and C. K. Zarins. Predictive medicine: computational techniques in therapeutic decision-making. Comput. Aided Surg 4:231–247, 1999.

    Article  CAS  PubMed  Google Scholar 

  37. Thavendiranathan, P., D. Phelan, P. Collier, J. D. Thomas, S. D. Flamm, and T. H. Marwick. Quantitative assessment of mitral regurgitation: how best to do it. JACC Cardiovasc. Imaging 5:1161–1175, 2012.

    Article  PubMed  Google Scholar 

  38. Van De Bruaene, A., A. La Gerche, G. Claessen, P. De Meester, S. Devroe, H. Gillijns, J. Bogaert, P. Claus, H. Heidbuchel, M. Gewillig, and W. Budts. Sildenafil improves exercise hemodynamics in fontan patients. Circ. Cardiovasc. Imaging 7:265–273, 2014.

    Article  Google Scholar 

  39. Vignon-Clementel, I. E., A. L. Marsden, and J. A. Feinstein. A primer on computational simulation in congenital heart disease for the clinician. Prog. Pediatr. Cardiol. 30:3–13, 2010.

    Article  Google Scholar 

  40. Warburton, D. E., M. J. Haykowsky, H. A. Quinney, D. Blackmore, K. K. Teo, and D. P. Humen. Myocardial response to incremental exercise in endurance-trained athletes: influence of heart rate, contractility and the frank-starling effect. Exp. Physiol. 87:613–622, 2002.

    Article  PubMed  Google Scholar 

  41. Whitehead, K. K., K. Pekkan, H. D. Kitajima, S. M. Paridon, A. P. Yoganathan, and M. A. Fogel. Nonlinear power loss during exercise in single-ventricle patients after the fontan: insights from computational fluid dynamics. Circulation 116:I165–I171, 2007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Leducq Foundation as part of the Transatlantic Network of Excellence for Cardiovascular Research, a Burroughs Wellcome Fund Career award at the Scientific Interface, and an American Heart Association Postdoctoral Fellowship.

Conflict of Interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Marsden.

Additional information

Associate Editor Andreas Anayiotos oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 62 kb)

Supplementary material 2 (DOCX 3234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kung, E., Perry, J.C., Davis, C. et al. Computational Modeling of Pathophysiologic Responses to Exercise in Fontan Patients. Ann Biomed Eng 43, 1335–1347 (2015). https://doi.org/10.1007/s10439-014-1131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1131-4

Keywords

Navigation