Skip to main content
Log in

Acellular Blood Vessels Combined Human Hair Follicle Mesenchymal Stem Cells for Engineering of Functional Arterial Grafts

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Tissue-engineered vessels offer options for autologous vascular grafts in cardiovascular repair and regeneration. The experiments aimed to construct functional arterial grafts by combining human hair follicle mesenchymal stem cells (HF-MSCs) with acellular umbilical arteries. We isolated mesenchymal stem cells from human hair follicles. Under appropriate culture conditions, these cells displayed CD44, CD90 and CD105, and exhibited the potential for differentiation to adipocytes, osteoblasts and chondrocytes. Very promisingly, HF-MSCs expressed the vascular smooth muscle specific markers in the presence of transforming growth factor-β. We created acellular arterial scaffolds by digesting human umbilical arteries with trypsin and sodium dodecyl sulfate. These acellular arterial scaffolds retained major components of the extracellular matrix. The mechanical properties of these acellular arterial scaffolds were very similar to those of native blood vessels. We then seeded HF-MSCs into acellular arterial scaffolds and found that they still expressed vascular smooth muscle specific markers. The arterial grafts derived from HF-MSCs demonstrated vasoreactivity in response to humoral constrictors. We constructed arterial grafts that are very close to native blood vessels in their structures and physiological functions. These properties suggest that these arterial grafts could be used as small diameter arterial grafts for cardiovascular repair and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Allaire, E., P. Bruneval, C. Mandet, J. P. Becquemin, and J. B. Michel. The immunogenicity of the extracellular matrix in arterial xenografts. Surgery 122:73–81, 1997.

    Article  CAS  PubMed  Google Scholar 

  2. Amiel, G. E., M. Komura, O. Shapira, J. J. Yoo, S. Yazdani, J. Berry, S. Kaushal, J. Bischoff, A. Atala, and S. Soker. Engineering of blood vessels from acellular collagen matrices coated with human endothelial cells. Tissue Eng. 12:2355–2365, 2006.

    Article  CAS  PubMed  Google Scholar 

  3. Baim, D. S. Percutaneous treatment of saphenous vein graft disease: the ongoing challenge. J. Am. Coll. Cardiol. 42:1370–1372, 2003.

    Article  PubMed  Google Scholar 

  4. Birchall, M., and G. Hamilton. Tissue-engineered vascular replacements for children. Lancet 380:197–198, 2012.

    Article  PubMed  Google Scholar 

  5. Bitter, T., and H. M. Muir. A modified uronic acid carbazole reaction. Anal. Biochem. 4:330–334, 1962.

    Article  CAS  PubMed  Google Scholar 

  6. Cervera, R. P., and M. Stojkovic. Commentary: somatic cell nuclear transfer-progress and promise. Stem Cells 26:494–495, 2008.

    Article  PubMed  Google Scholar 

  7. Chou, M. T., S. N. Chang, C. Ke, H. I. Chang, M. L. Sung, H. C. Kuo, and C. N. Chen. The proliferation and differentiation of placental-derived multipotent cells into smooth muscle cells on fibrillar collagen. Biomaterials 31:4367–4375, 2010.

    Article  CAS  PubMed  Google Scholar 

  8. Dahl, S. L., J. Koh, V. Prabhakar, and L. E. Niklason. Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant. 12:659–666, 2003.

    Article  PubMed  Google Scholar 

  9. Daniel, J., K. Abe, and P. S. McFetridge. Development of the human umbilical vein scaffold for cardiovascular tissue engineering applications. ASAIO J. 51:252–261, 2005.

    Article  PubMed  Google Scholar 

  10. Dardik, H. The second decade of experience with the umbilical vein graft for lower-limb revascularization. Cardiovasc. Surg. 3:265–269, 1995.

    Article  CAS  PubMed  Google Scholar 

  11. Dardik, H., N. Miller, A. Dardik, I. Ibrahim, B. Sussman, S. M. Berry, F. Wolodiger, M. Kahn, and I. Dardik. A decade of experience with the glutaraldehyde-tanned human umbilical cord vein graft for revascularization of the lower limb. J. Vasc. Surg. 7:336–346, 1988.

    Article  CAS  PubMed  Google Scholar 

  12. Dardik, H., K. Wengerter, F. Qin, A. Pangilinan, F. Silvestri, F. Wolodiger, M. Kahn, B. Sussman, and I. M. Ibrahim. Comparative decades of experience with glutaraldehydetanned human umbilical cord vein graft for lower limb revascularization: an analysis of 1275 cases. J. Vasc. Surg. 35:64–71, 2002.

    PubMed  Google Scholar 

  13. de Valence, S., J. C. Tille, J. P. Giliberto, W. Mrowczynski, R. Gurny, B. H. Walpoth, and M. Möller. Advantages of bilayered vascular grafts for surgical applicability and tissue regeneration. Acta biomater. 8:3914–3920, 2012.

    Article  PubMed  Google Scholar 

  14. Eagle, K. A., R. A. Guyton, R. Davidoff, F. H. Edwards, G. A. Ewy, T. J. Gardner, J. C. Hart, H. C. Herrmann, L. D. Hillis, A. M. Hutter, Jr., B. W. Lytle, R. A. Marlow, W. C. Nugent, and T. A. Orszulak. ACC/AHA 2004 guideline update for coronary artery bypass graft surgery: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1999 Guidelines for Coronary Artery Bypass Graft Surgery). Circulation 110:e340–e437, 2004.

    Article  PubMed  Google Scholar 

  15. Elkins, R. C., M. M. Lane, S. B. Capps, C. McCue, and P. E. Dawson. Humoral immune response to allograft valve tissue pretreated with an antigen reduction process. Semin. Thorac. Cardiovasc. Surg. 13:82–86, 2001.

    Article  CAS  PubMed  Google Scholar 

  16. Gui, L., A. Muto, S. A. Chan, C. K. Breuer, and L. E. Niklason. Development of decellularized human umbilical arteries as small-diameter vascular grafts. Tissue Eng. Part A. 15:2665–2676, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hochedlinger, K., and R. Jaenisch. Nuclear reprogramming and pluripotency. Nature 441:1061–1067, 2006.

    Article  CAS  PubMed  Google Scholar 

  18. Hoogduijn, M. J., E. Gorjup, and P. G. Genever. Comparative characterization of hair follicle dermal stem cells and bone marrow mesenchymal stem cells. Stem Cells Dev. 15:49–60, 2006.

    Article  CAS  PubMed  Google Scholar 

  19. Hoopes, C. W., and J. F. Platt. Molecular strategies for clinical xenotransplantation in cardiothoracic surgery. Semin. Thorac. Cardiovasc. Surg. 8:156–174, 1996.

    CAS  PubMed  Google Scholar 

  20. Jahoda, C. A., J. Whitehouse, A. J. Reynolds, and N. Hole. Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages. Exp. Dermatol. 12:849–859, 2003.

    Article  PubMed  Google Scholar 

  21. Krawiec, J. T., and D. A. Vorp. Adult stem cell-based tissue engineered blood vessels: a review. Biomaterials 33:3388–3400, 2012.

    Article  CAS  PubMed  Google Scholar 

  22. Krenning, G., J. R. Moonen, M. J. van Luyn, and M. C. Harmsen. Vascular smooth muscle cells for use in vascular tissue engineering obtained by endothelial-to-mesenchymal transdifferentiation (EnMT) on collagen matrices. Biomaterials 29:3703–3711, 2008.

    Article  CAS  PubMed  Google Scholar 

  23. Lako, M., L. Armstrong, P. M. Cairns, S. Harris, N. Hole, and C. A. Jahoda. Hair follicle dermal cells repopulate the mouse haematopoietic system. J. Cell Sci. 115:3967–3974, 2002.

    Article  CAS  PubMed  Google Scholar 

  24. Liu, J. Y., H. F. Peng, and S. T. Andreadis. Contractile smooth muscle cells derived from hair-follicle stem cells. Cardiovasc. Res. 79:24–33, 2008.

    Article  CAS  PubMed  Google Scholar 

  25. Liu, J. Y., H. F. Peng, S. Gopinath, J. Tian, and S. T. Andreadis. Derivation of functional smooth muscle cells from multipotent human hair follicle mesenchymal stem cells. Tissue Eng. Part A. 16:2553–2564, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Liu, X., L. Song, J. Liu, S. Wang, X. Tan, X. Bai, T. Bai, Y. Wang, M. Li, Y. Song, and Y. Li. miR-18b inhibits TGF-β1-induced differentiation of hair follicle stem cells into smooth muscle cells by targeting SMAD2. Biochem. Biophys. Res. Commun. 438:551–556, 2013.

    Article  CAS  PubMed  Google Scholar 

  27. Liu, J. Y., D. D. Swartz, H. F. Peng, S. F. Gugino, J. A. Russell, and S. T. Andreadis. Functional tissue-engineered blood vessels from bone marrow progenitor cells. Cardiovasc. Res. 75:618–628, 2007.

    Article  CAS  PubMed  Google Scholar 

  28. Meyer, S. R., J. Nagendran, L. S. Desai, G. R. Rayat, T. A. Churchill, C. C. Anderson, R. V. Rajotte, J. R. Lakey, and D. B. Ross. Decellularization reduces the immune response to aortic valve allografts in the rat. J. Thorac. Cardiovasc. Surg. 130:469–476, 2005.

    Article  PubMed  Google Scholar 

  29. Peng, H. F., J. Y. Liu, S. T. Andreadis, and D. D. Swartz. Hair follicle-derived smooth muscle cells and small intestinal submucosa for engineering mechanically robust and vasoreactive vascular media. Tissue Eng. Part A. 17:981–990, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Rashid, S. T., B. Fuller, G. Hamilton, and A. M. Seifalian. Tissue engineering of a hybrid bypass graft for coronary and lower limb bypass surgery. FASEB J. 22:2084–2089, 2008.

    Article  CAS  PubMed  Google Scholar 

  31. Rieder, E., A. Nigisch, B. Dekan, M. T. Kasimir, F. Mühlbacher, E. Wolner, P. Simon, and G. Weigel. Granulocyte-based immune response against decellularized or glutaraldehyde cross-linked vascular tissue. Biomaterials 27:5634–5642, 2006.

    Article  CAS  PubMed  Google Scholar 

  32. Robotin-Johnson, M. C., P. E. Swanson, D. C. Johnson, R. B. Schuessler, and J. L. Cox. An experimental model of small intestinal submucosa as a growing vascular graft. J. Thorac. Cardiovasc. Surg. 116:805–811, 1998.

    Article  CAS  PubMed  Google Scholar 

  33. Rodolfa, K. T., and K. Eggan. A transcriptional logic for nuclear reprogramming. Cell 126:652–655, 2006.

    Article  CAS  PubMed  Google Scholar 

  34. Sandusky, G. E., G. C. Lantz, and S. F. Badylak. Healing comparison of small intestine submucosa and ePTFE grafts in the canine carotid artery. J. Surg. Res. 58:415–420, 1995.

    Article  CAS  PubMed  Google Scholar 

  35. Schaner, P. J., N. D. Martin, T. N. Tulenko, I. M. Shapiro, N. A. Tarola, R. F. Leichter, R. A. Carabasi, and P. J. Dimuzio. Decellularized vein as a potential scaffold for vascular tissue engineering. J. Vasc. Surg. 40:146–153, 2004.

    Article  PubMed  Google Scholar 

  36. Shinoka, T., D. Shum-Tim, P. X. Ma, R. E. Tanel, N. Isogai, R. Langer, J. P. Vacanti, and J. E. Mayer, Jr. Creation of viable pulmonary artery autografts through tissue engineering. J. Thorac. Cardiovasc. Surg. 115:536–545, 1998.

    Article  CAS  PubMed  Google Scholar 

  37. Torikai, K., H. Ichikawa, K. Hirakawa, G. Matsumiya, T. Kuratani, S. Iwai, A. Saito, N. Kawaguchi, N. Matsuura, and Y. Sawa. A self-renewing, tissue-engineered vascular graft for arterial reconstruction. J. Thorac. Cardiovasc. Surg. 136:37–45, 2008.

    Article  PubMed  Google Scholar 

  38. Tschoeke, B., T. C. Flanagan, A. Cornelissen, S. Koch, A. Roehl, M. Sriharwoko, J. S. Sachweh, T. Gries, T. Schmitz-Rode, and S. Jockenhoevel. Development of a composite degradable/nondegradable tissue-engineered vascular graft. Artif. Organs 32:800–809, 2008.

    PubMed  Google Scholar 

  39. Tu, J. V., C. L. Pashos, C. D. Naylor, E. Chen, S. L. Normand, J. P. Newhouse, and B. J. McNeil. Use of cardiac procedures and outcomes in elderly patients with myocardial infarction in the United States and Canada. N. Engl. J. Med. 336:1500–1505, 1997.

    Article  CAS  PubMed  Google Scholar 

  40. Wang, K., Y. Guan, Y. Liu, M. Zhu, T. Li, D. An, L. Ou, Y. Che, G. Zhang, J. Zhang, X. L. Zheng, and D. Kong. Fibrin glue with autogenic bone marrow mesenchymal stem cells for urethral injury repair in rabbit model. Tissue Eng. Part A. 18:23–24, 2012.

    CAS  Google Scholar 

  41. Wang, Y., J. Liu, X. Tan, G. Li, Y. Gao, X. Liu, L. Zhang, and Y. Li. Induced pluripotent stem cells from human hair follicle mesenchymal stem cells. Stem Cell Rev. 9:451–460, 2012.

    Article  PubMed Central  Google Scholar 

  42. Weinberg, C. B., and E. Bell. A blood vessel model constructed from collagen and cultured vascular cells. Science 231:397–400, 1986.

    Article  CAS  PubMed  Google Scholar 

  43. Wells, W., M. Malas, C. J. Baker, S. M. Quardt, and M. L. Barr. Depopulated vena caval homograft: a new venous conduit. J. Thorac. Cardiovasc. Surg. 126:498–503, 2003.

    Article  PubMed  Google Scholar 

  44. Woessner, Jr., J. F. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch. Biochem. Biophys. 93:440–447, 1961.

    Article  CAS  PubMed  Google Scholar 

  45. Yu, H., D. Fang, S. M. Kumar, L. Li, T. K. Nguyen, G. Acs, M. Herlyn, and X. Xu. Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am. J. Pathol. 168:1879–1888, 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Zhang, X., Y. Wang, Y. Gao, X. Liu, T. Bai, M. Li, L. Li, G. Chi, H. Xu, F. Liu, J. Y. Liu, and Y. Li. Maintenance of high proliferation and multipotent potential of human hair follicle -derived mesenchymal stem cells by growth factors. Int. J. Mol. Med. 31:913–921, 2013.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We appreciate the help of Dr. F William Orr, Department of Pathology, University of Manitoba, Canada, for revising this manuscript. The present study was supported by grants from the State Key Development Program of Basic Research of China (no. 211CB606200), the National Natural Science Foundation of China (no. 30930026/C100101), the Science and Technology Planning Project of Jilin Province, China (no. 20100947, no. 20120935), the Frontier Interdiscipline Program of Norman Bethune Health Science Center of Jilin University (2013101007) and the Specialized Research Fund for the Doctoral Program of Higher Education (20130061110077).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Yu Liu or Yulin Li.

Additional information

Associate Editor Jennifer West oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Liu, F., Zhang, L. et al. Acellular Blood Vessels Combined Human Hair Follicle Mesenchymal Stem Cells for Engineering of Functional Arterial Grafts. Ann Biomed Eng 42, 2177–2189 (2014). https://doi.org/10.1007/s10439-014-1061-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1061-1

Keywords

Navigation