Skip to main content
Log in

Integrated Effects of Matrix Mechanics and Vascular Endothelial Growth Factor (VEGF) on Capillary Sprouting

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Angiogenesis is the growth of new capillaries from existing vasculature. Vascular network formation is known to be regulated by the biophysical and biochemical signals emanating from the microenvironment. However, it is not clear how endothelial cells integrate these signals to drive the capillary morphogenesis. In this study, human umbilical endothelial cells (HUVECs) were seeded on scaffolds with varying stiffness and capillary formation was quantified. Our study revealed that cells formed well defined networks on compliant gels. Increase in stiffness resulted in a decrease in sprouting. VEGF was encapsulated within the scaffolds at concentrations ranging from 0 to 100 ng/mL to investigate the interplay between VEGF concentration profiles and matrix stiffness in guiding network formation. Quantitative analysis revealed that while VEGF disrupted sprout formation on compliant substrates, it elicited a sprouting response in cells seeded on scaffolds of intermediate rigidity. Additionally, we also observed that a minimum cell density is required for the formation of well-connected vascular networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Arrio-Dupont, M., S. Cribier, G. Foucault, P. F. Devaux, and A. d’Albis. Diffusion of fluorescently labeled macromolecules in cultured muscle cells. Biophys. J. 70(5):2327–2332, 1996.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Berrier, A. L., and K. M. Yamada. Cell–matrix adhesion. J. Cell. Physiol. 213(3):565–573, 2007.

    Article  PubMed  CAS  Google Scholar 

  3. Buzzai, M., R. G. Jones, R. K. Amaravadi, J. J. Lum, R. J. DeBerardinis, F. Zhao, and C. B. Thompson. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67(14):6745–6752, 2007.

    Article  PubMed  CAS  Google Scholar 

  4. Califano, J. P., and C. A. Reinhart-King. The effects of substrate elasticity on endothelial cell network formation and traction force generation. Conf. Proc. IEEE Eng. Med. Biol. Soc., Vol. 1, 2009, pp. 3343–3345.

  5. Califano, J. P., and C. A. Reinhart-King. A balance of substrate mechanics and matrix chemistry regulates endothelial cell network assembly. Cell. Mol. Bioeng. 1(2–3):122–132, 2008.

    Article  Google Scholar 

  6. Califano, J. P., and C. A. Reinhart-King. Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact. Cell. Mol. Bioeng. 3(1):68–75, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Carlevaro, M. F., S. Cermelli, R. Cancedda, and F. D. Cancedda. Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation. J. Cell. Sci. 113(1):59–69, 2000.

    PubMed  CAS  Google Scholar 

  8. Critser, P. J., S. T. Kreger, S. L. Voytik-Harbin, and M. C. Yoder. Collagen matrix physical properties modulate endothelial colony forming cell-derived vessels in vivo. Microvasc. Res. 80(1):23–30, 2000.

    Article  CAS  Google Scholar 

  9. Daugman, J. G. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Opt. Soc. Am. A 2(7):1160–1169, 1985.

    Article  CAS  Google Scholar 

  10. Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143, 2005.

    Article  PubMed  CAS  Google Scholar 

  11. Doillon, C. J., A. J. Wasserman, R. A. Berg, and F. H. Silver. Behaviour of fibroblasts and epidermal cells cultivated on analogues of extracellular matrix. Biomaterials 9(1):91–96, 1988.

    Google Scholar 

  12. Duong, H. T., S. C. Erzurum, and K. Asosingh. Pro-angiogenic hematopoietic progenitor cells and endothelial colony-forming cells in pathological angiogenesis of bronchial and pulmonary circulation. Angiogenesis 14(4):411–422, 2011.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Ekstrand, A. J., R. Cao, M. Björndahl, S. Nyström, A. C. Jönsson-Rylander, H. Hassani, and Y. Cao. Deletion of neuropeptide Y (NPY) 2 receptor in mice results in blockage of NPY-induced angiogenesis and delayed wound healing. Proc. Natl Acad. Sci. USA. 100(10):6033–6038, 2003.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Engler, A. J., M. A. Griffin, S. Sen, C. G. Bönnemann, H. L. Sweeney, and D. E. Discher. Myotubes differentiate optimally on substrates with tissue-like stiffness pathological implications for soft or stiff microenvironments. J. Cell. Biol. 166(6):877–887, 2004.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Engler, A. J., L. Richert, J. Y. Wong, C. Picart, and D. E. Discher. Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: correlations between substrate stiffness and cell adhesion. Surf. Sci. 570(1):142–154, 2004.

    Article  CAS  Google Scholar 

  16. Federspiel, W. J., and A. S. Popel. A theoretical analysis of the effect of the particulate nature of blood on oxygen release in capillaries. Microvasc. Res. 32(2):164–189, 1986.

    Article  PubMed  CAS  Google Scholar 

  17. Ghajar, C. M., X. Chen, J. W. Harris, V. Suresh, C. C. Hughes, N. L. Jeon, and S. C. George. The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys. J. 94(5):1930–1941, 2008.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Gospodarowicz, D., S. Massoglia, J. Cheng, and D. K. Fujii. Effect of fibroblast growth factor and lipoproteins on the proliferation of endothelial cells derived from bovine adrenal cortex, brain cortex, and corpus luteum capillaries. J. Cell. Physiol. 127(1):121–136, 1986.

    Article  PubMed  CAS  Google Scholar 

  19. Haraguchi, K., T. Takehisa, and S. Fan. Effects of clay content on the properties of nanocomposite hydrogels composed of poly (N-isopropylacrylamide) and clay. Macromolecules 35(27):10162–10171, 2002.

    Article  CAS  Google Scholar 

  20. Hersel, U., C. Dahmen, and H. Kessler. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24(24):4385–4415, 2003.

    Article  PubMed  CAS  Google Scholar 

  21. Hoeben, A., B. Landuyt, M. S. Highley, H. Wildiers, A. T. Van Oosterom, and E. A. De Bruijn. Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev. 56(4):549–580, 2004.

    Article  PubMed  CAS  Google Scholar 

  22. Hood, J. D., R. Frausto, W. B. Kiosses, M. A. Schwartz, and D. A. Cheresh. Differential αv integrin-mediated Ras-ERK signaling during two pathways of angiogenesis. J. Cell. Biol. 162(5):933–943, 2003.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Kang, H. W., Y. Tabata, and Y. Ikada. Effect of porous structure on the degradation of freeze-dried gelatin hydrogels. J. Bioactive Compat. Polym. 14(4):331–343, 1999.

    CAS  Google Scholar 

  24. Kniazeva, E., and A. J. Putnam. Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D. Am. J. Physiol. Cell Physiol. 297(1):C179–C187, 2009.

    Article  PubMed  CAS  Google Scholar 

  25. Lammert, E., G. Gu, M. McLaughlin, D. Brown, R. Brekken, L. C. Murtaugh, and D. A. Melton. Role of VEGF-A in vascularization of pancreatic islets. Curr. Biol. 13(12):1070–1074, 2003.

    Article  PubMed  CAS  Google Scholar 

  26. Mammoto, A., K. M. Connor, T. Mammoto, C. W. Yung, D. Huh, C. M. Aderman, and D. E. Ingber. A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature 457(7233):1103–1108, 2009.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Miller, J. S., C. J. Shen, W. R. Legant, J. D. Baranski, B. L. Blakely, and C. S. Chen. Bioactive hydrogels made from step-growth derived PEGepeptide macromers. Biomaterials 31:3736–3743, 2010.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Miyamoto, S., H. Teramoto, O. A. Coso, J. S. Gutkind, P. D. Burbelo, S. K. Akiyama, and K. M. Yamada. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J. Cell. Biol. 131(3):791–805, 1995.

    Article  PubMed  CAS  Google Scholar 

  29. Murphy, C. M., M. G. Haugh, and F. J. O’Brien. The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31(3):461–466, 2010.

    Article  PubMed  CAS  Google Scholar 

  30. Nazarov, R., H. J. Jin, and D. L. Kaplan. Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 5(3):718–726, 2004.

    Article  PubMed  CAS  Google Scholar 

  31. Nichol, J. W., S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31(21):5536–5544, 2010.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Park, S. N., J. C. Park, H. O. Kim, M. J. Song, and H. Suh. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide cross-linking. Biomaterials 23(4):1205–1212, 2002.

    Article  PubMed  CAS  Google Scholar 

  33. Pedron, S., and B. A. C. Harley. Impact of the biophysical features of a 3D gelatin microenvironment on glioblastoma malignancy. J. Biomed. Mater. Res A. 101A:3404–3415, 2013.

    Google Scholar 

  34. Plopper, G. E., H. P. McNamee, L. E. Dike, K. Bojanowski, and D. E. Ingber. Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol. Biol. Cell. 6(10):1349, 1995.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Reinhart-King, C. A., M. Dembo, and D. A. Hammer. The dynamics and mechanics of endothelial cell spreading. Biophys. J. 89(1):676–689, 2005.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Saunders, R. L., and D. A. Hammer. Assembly of human umbilical vein endothelial cells on compliant hydrogels. Cell. Mol. Bioeng. 3(1):60–67, 2010.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Shen, F., Y. L. Cui, L. F. Yang, K. D. Yao, X. H. Dong, W. Y. Jia, and H. D. Shi. A study on the fabrication of porous chitosan/gelatin network scaffold for tissue engineering. Polym. Int. 49(12):1596–1599, 2000.

    Article  CAS  Google Scholar 

  38. Sieminski, A. L., R. P. Hebbel, and K. J. Gooch. The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Exp. Cell. Res. 297(2):574–584, 2004.

    Article  PubMed  CAS  Google Scholar 

  39. Sieminski, A. L., A. S. Was, G. Kim, H. Gong, and R. D. Kamm. The stiffness of three-dimensional ionic self-assembling peptide gels affects the extent of capillary-like network formation. Cell. Biochem. Biophys. 49(2):73–83, 2007.

    Article  PubMed  CAS  Google Scholar 

  40. Verbridge, S. S., A. Chakrabarti, P. DelNero, B. Kwee, J. D. Varner, A. D. Stroock, and C. Fischbach. Physicochemical regulation of endothelial sprouting in a 3D microfluidic angiogenesis model. J. Biomed. Mater. Res. A 101(10):2948–2956, 2013.

    Google Scholar 

  41. Wood, J. A., N. M. Shah, C. T. McKee, M. L. Hughbanks, S. J. Liliensiek, P. Russell, and C. J. Murphy. The role of substratum compliance of hydrogels on vascular endothelial cell behavior. Biomaterials 32(22):5056–5064, 2011.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. ATCC® STem Cell CulTure Guide: tips and techniques for culturing stem cells.

Download references

Acknowledgments

The authors would like to thank Dr. Wonsuk Kim and Jacob Mack for their help in performing the mechanical testing of the samples and Mao Ye for his help in SEM imaging. We would also like to thank University of Michigan-Dearborn and University of Michigan-Ann Arbor: Office of the Vice President for Research for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gargi Ghosh.

Additional information

Associate Editor K. A. Athanasiou oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Al-Ameen, M.A. & Ghosh, G. Integrated Effects of Matrix Mechanics and Vascular Endothelial Growth Factor (VEGF) on Capillary Sprouting. Ann Biomed Eng 42, 1024–1036 (2014). https://doi.org/10.1007/s10439-014-0987-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-0987-7

Keywords

Navigation