Skip to main content
Log in

Endothelial Insulin-Like Growth Factor-1 Modulates Proliferation and Phenotype of Smooth Muscle Cells Induced by Low Shear Stress

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Endothelial cells (ECs) are directly exposed to shear stress and modulate the neighboring vascular smooth muscle cells (VSMCs), which plays important roles in vascular remodeling during atherosclerosis. Our previous research revealed that insulin-like growth factors (IGFs) might participate in low shear stress (LowSS) induced vascular remodeling, which remains to be elucidated. Using EC/VSMC co-cultured parallel-plate flow chamber, LowSS (5 dyn/cm2) was applied and normal shear stress (NSS, 15 dyn/cm2) was used as control. LowSS induced IGF-1 secretion from ECs, which subsequently phosphorylated IGF-1 receptor (IGF-1R) on co-cultured VSMCs, then increased Akt phosphorylation and Sirt2 expression. Decreasing IGF-1 in ECs by RNA interference (RNAi) reversed these effects on VSMCs. Exogenous IGF-1 increased IGF-1R and Akt phosphorylation, Sirt2 expression, and proliferation of VSMCs, and induced VSMCs towards synthetic phenotype. PI3 K/Akt specific inhibitor wortmannin decreased Sirt2 expression, proliferation, and synthetic phenotype transformation of VSMCs, but had no effect on IGF-1R. Sirt2 RNAi repressed VSMC proliferation and phenotypic transformation, but had no effect on IGF-1R and Akt. Taken together, LowSS induces the secretion of IGF-1 from ECs, which subsequently paracrine influences the co-cultured VSMCs via IGF-1R and Akt phosphorylation, and Sirt2 expression, then results in the proliferation and synthetic phenotype transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Borradaile, N. M., and J. G. Pickering. NAD+, sirtuins, and cardiovascular disease. Curr. Pharm. Des. 15:110–117, 2009.

    Article  CAS  PubMed  Google Scholar 

  2. Brown, J., E. Y. Jones, and B. E. Forbes. Keeping IGF-II under control: lessons from the IGF-II-IGF2R. Trends. Biochem. Sci. 34:612–619, 2009.

    Article  CAS  PubMed  Google Scholar 

  3. Burghoff, S., and J. Schrader. Secretome of human endothelial cells under shear stress. J. Proteome Res. 10:1160–1169, 2011.

    Article  CAS  PubMed  Google Scholar 

  4. Cheng, J., and J. Du. Mechanical stretch simulates proliferation of venous smooth muscle cells through activation of the insulin-like growth factor-1 receptor. Arterioscler. Thromb. Vasc. Biol. 27:1744–1751, 2007.

    Article  CAS  PubMed  Google Scholar 

  5. Chisalita, S. I., and H. J. Arnqvist. Insulin-like growth factor I receptors are more abundant than insulin receptors in human micro- and macrovascular endothelial cells. Am. J. Physiol. Endocrinol. Metab. 286:E896–E901, 2004.

    Article  CAS  PubMed  Google Scholar 

  6. Chiu, J. J., L. J. Chen, C. N. Chen, P. L. Lee, and C. I. Lee. A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells. J. Biomech. 37:531–539, 2004.

    Article  PubMed  Google Scholar 

  7. Chiu, J. J., S. Usami, and S. Chien. Vascular endothelial responses to altered shear stress: pathologic implications for atherosclerosis. Ann. Med. 41:19–28, 2009.

    Article  CAS  PubMed  Google Scholar 

  8. Conti, E., M. B. Musumeci, M. D. Giusti, E. Dito, E. Mastromarino, C. Autore, and M. Volpe. IGF-1 and atherothrombosis: relevance to pathophysiology and therapy. Clin. Sci. 120:377–402, 2011.

    Article  CAS  PubMed  Google Scholar 

  9. Elhadj, S., R. M. Akers, and K. Forsten-Williams. Chronic pulsatile shear stress alters insulin-like growth factor-I (IGF-I) binding protein release in vitro. Ann. Biomed. Eng. 31:163–170, 2003.

    Article  PubMed  Google Scholar 

  10. Fukushima, T., Y. Nakamura, D. Yamanaka, T. Shibano, K. Chida, S. Minami, T. Asano, F. Hakuno, and S. Takahashi. Phosphatidylinositol 3-kinase (PI3K) activity bound to insulin-like growth factor-I (IGF-I) receptor, which is continuously sustained by IGF-I stimulation, is required for IGF-I-induced cell proliferation. J. Biol. Chem. 287:29713–29721, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Fulco, M., R. L. Schiltz, S. Lezzi, M. T. King, P. Zhao, Y. Kashiwaya, E. Hoffman, R. L. Veech, and V. Sartorelli. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol. Cell 12:51–62, 2003.

    Article  CAS  PubMed  Google Scholar 

  12. Gorenne, I., S. Kumar, K. Gray, N. Figg, H. Yu, J. Mercer, and M. Bennett. Vascular smooth muscle cell sirtuin 1 protects against DNA damage and inhibits atherosclerosis. Circulation 127:386–396, 2013.

    Article  CAS  PubMed  Google Scholar 

  13. Hashimoto-Komatsu, A., T. Hirase, M. Asaka, and K. Node. Angiotensin II induces microtubule reorganization mediated by a deacetylase SIRT2 in endothelial cells. Hypertens. Res. 34:949–956, 2011.

    Article  CAS  PubMed  Google Scholar 

  14. Hayashi, K., K. Shibata, T. Morita, K. Iwasaki, M. Watanabe, and K. Sobue. Insulin receptor substrate-1/SHP-2 interaction, a phenotype-dependent switching machinery of insulin-like growth factor-I signaling in vascular smooth muscle cells. J. Biol. Chem. 279:40807–408018, 2004.

    Article  CAS  PubMed  Google Scholar 

  15. Jacquemin, V., D. Furling, A. Bigot, G. S. Butler-Browne, and V. Mouly. IGF-1 induces human myotube hypertrophy by increasing cell recruitment. Exp. Cell. Res. 299:148–158, 2004.

    Article  CAS  PubMed  Google Scholar 

  16. Jalali, S., M. A. del Pozo, K. D. Chen, H. Miao, Y. S. Li, M. A. Schwartz, J. Y. Shyy, and S. Chien. Integrin-mediated mechanotransduction mechanotransduction requires its dynamic interaction with specific ECM ligands. Proc. Natl. Acad. Sci. U.S.A. 98:1042–1046, 2001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Jia, G., A. K. Mitra, D. M. Gangahar, and D. K. Agrawal. Insulin-like growth factor-1 induces phosphorylation of PI3K-Akt/PKB to potentiate proliferation of smooth muscle cells in human saphenous vein. Exp. Mol. Pathol. 89:20–26, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kapur, S., S. Mohan, D. J. Baylink, and K. W. Lau. Fluid shear stress synergizes with insulin-like growth factor-I (IGF-I) on osteoblast proliferation through integrin-dependent activation of IGF-I mitogenic signaling pathway. J. Biol. Chem. 280:20163–20170, 2005.

    Article  CAS  PubMed  Google Scholar 

  19. Katic, M., and C. R. Kahn. The role of insulin and IGF-1 signaling in longevity. Cell. Mol. Life. Sci. 62:320–343, 2005.

    Article  CAS  PubMed  Google Scholar 

  20. Kwan, H. Y., P. C. Leung, Y. Huang, and X. Yao. Depletion of intracellular Ca2+ stores sensitizes the flow-induced Ca2+ influx in rat endothelial cells. Circ. Res. 92:286–292, 2003.

    Article  CAS  PubMed  Google Scholar 

  21. Lau, K. W., S. Kapur, C. Kesavan, and D. J. Baylink. Up-regulation of the Wnt, estrogen receptor, insulin-like growth factor-I, and bone morphogenetic protein pathways in C57BL/6J osteoblasts as opposed to C3H/HeJ osteoblasts in part contributes to the differential anabolic response to fluid shear. J. Biol. Chem. 281:9576–9588, 2006.

    Article  CAS  PubMed  Google Scholar 

  22. Lemieux, M. E., X. Yang, K. Jardine, X. He, K. X. Jacobsen, W. A. Staines, M. E. Harper, and M. W. McBurney. The Sirt1 deacetylase modulates the insulin-like growth factor signaling pathway in mammals. Mech. Aging Dev. 126:1097–1105, 2005.

    Article  CAS  PubMed  Google Scholar 

  23. Li, Y. S., J. H. Haga, and S. Chien. Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biomech. 38:1949–1971, 2005.

    Article  PubMed  Google Scholar 

  24. Li, H. Z., G. K. Rajendran, N. N. Liu, C. Ware, B. P. Rubin, and Y. S. Gu. SirT1 modulates the estrogen-insulin-like growth factor-1 signaling for postnatal development of mammary gland in mice. Breast Cancer. Res. 9:1–12, 2007.

    Article  CAS  Google Scholar 

  25. Li, Z., Q. R. Xie, Z. Chen, S. Lu, and W. Xia. Regulation of SIRT2 levels for human non-small cell lung cancer therapy. Lung Cancer 82:9–15, 2013.

    Article  PubMed  Google Scholar 

  26. Liu, J., X. Wu, X. Wang, Y. Zhang, P. Bu, Q. Zhang, and F. Jiang. Global gene expression profiling reveals functional importance of Sirt2 in endothelial cells under oxidative stress. Int. J. Mol. Sci. 14:5633–5649, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Matlung, H. L., A. E. Neele, H. C. Groen, K. van Gaalen, B. G. Tuna, A. van Weert, J. de Vos, J. J. Wentzel, M. Hoogenboezem, J. D. van Buul, E. VanBavel, and E. N. Bakker. Transglutaminase activity regulates atherosclerotic plaque composition at locations exposed to oscillatory shearstress. Atherosclerosis 224:355–362, 2012.

    Article  CAS  PubMed  Google Scholar 

  28. Mayr, M., and Q. B. Xu. Smooth muscle cell apoptosis in arteriosclerosis. Exp. Gerontol. 36:969–987, 2001.

    Article  CAS  PubMed  Google Scholar 

  29. Mohar, D. S., and S. Malik. The sirtuin system: the holy grail of resveratrol? J. Clin. Exp. Cardiolog. 3:pii216, 2012.

    Google Scholar 

  30. Qi, Y. X., J. Jiang, X. H. Jiang, X. D. Wang, S. Y. Ji, Y. Han, D. K. Long, B. R. Shen, Z. Q. Yan, S. Chien, and Z. L. Jiang. PDGF-BB and TGF-β1 on cross-talk between endothelial and smooth muscle cells in vascular remodeling induced by low shear stress. Proc. Natl. Acad. Sci. U.S.A. 108:1908–1913, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Qi, Y. X., M. J. Qu, D. K. Long, B. Liu, Q. P. Yao, S. Chien, and Z. L. Jiang. Rho-GDP dissociation inhibitor alpha downregulated by low shear stress promotes vascular smooth muscle cell migration and apoptosis: a proteomic analysis. Cardiovasc. Res. 80:114–122, 2008.

    Article  CAS  PubMed  Google Scholar 

  32. Qu, M. J., B. Liu, H. Q. Wang, Z. Q. Yan, B. R. Shen, and Z. J. Jiang. Frequency-dependent phenotype modulation of vascular smooth muscle cells under cyclic mechanical strain. J. Vasc. Res. 44:345–353, 2007.

    Article  PubMed  Google Scholar 

  33. Shi, Z. D., and J. M. Tarbell. Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Ann. Biomed. Eng. 39:1608–1619, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Sundaresan, N. R., P. Vasudevan, L. Zhong, G. Kim, S. Samant, V. Parekh, V. B. Pillai, P. V. Ravindra, M. Gupta, V. Jeevanandam, J. M. Cunningham, C. X. Deng, D. B. Lombard, R. Mostoslavsky, and M. P. Gupta. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat. Med. 18:1643–1650, 2012.

    Article  CAS  PubMed  Google Scholar 

  35. Tarbell, J. M. Shear stress and the endothelial transport barrier. Cardiovasc. Res. 87:320–330, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Tsai, M. C., L. H. Chen, J. Zhou, Z. H. Tang, T. F. Hsu, Y. Wang, Y. T. Shih, H. H. Peng, N. P. Wang, Y. F. Guan, S. Chien, and J. J. Chiu. Shear stress induces synthetic-to-contractile phenotypic modulation in smooth muscle cells via peroxisome proliferator-activated receptor α/δ activations by prostacyclin released by sheared endothelial cells. Circ. Res. 105:471–480, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Vassilopoulos, A., K. S. Fritz, D. R. Petersen, and D. Gius. The human sirtuin family: evolutionary divergences and functions. Hum. Genomics 5:485–496, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Vinciguerra, M., M. P., Santini, C. Martinez, V. Pazienza, W. C. Claycomb, A. Giuliani, and N. Rosenthal. mIGF-1/JNK1/SirT1 signaling confers protection against oxidative stress in the heart. Aging Cell 11:139–149, 2012.

    Google Scholar 

  39. Wang, H. Q., L. X. Huang, M. J. Qu, Z. Q. Yan, B. Liu, B. R. Shen, and Z. L. Jiang. Shear stress protects against endothelial regulation of vascular smooth muscle cell migration in a coculture system. Endothelium 13:171–180, 2006.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China, Nos. 11002091, 11232010 and 11172178, and Shanghai Rising-Star Program, No. 11QA1403200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Xin Qi.

Additional information

Associate Editor Cheng Dong oversaw the review of this article.

Lu Wang and Yue Han contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 422 kb)

Supplementary material 2 (DOCX 25.4 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Han, Y., Shen, Y. et al. Endothelial Insulin-Like Growth Factor-1 Modulates Proliferation and Phenotype of Smooth Muscle Cells Induced by Low Shear Stress. Ann Biomed Eng 42, 776–786 (2014). https://doi.org/10.1007/s10439-013-0957-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0957-5

Keywords

Navigation