Skip to main content
Log in

Computational Models of Ventricular- and Atrial-Like Human Induced Pluripotent Stem Cell Derived Cardiomyocytes

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The clear importance of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) as an in-vitro model highlights the relevance of studying these cells and their function also in-silico. Moreover, the phenotypical differences between the hiPSC-CM and adult myocyte action potentials (APs) call for understanding of how hiPSC-CMs are maturing towards adult myocytes. Using recently published experimental data, we developed two computational models of the hiPSC-CM AP, distinguishing between the ventricular-like and atrial-like phenotypes, emerging during the differentiation process of hiPSC-CMs. Also, we used the computational approach to quantitatively assess the role of ionic mechanisms which are likely responsible for the not completely mature phenotype of hiPSC-CMs. Our models reproduce the typical hiPSC-CM ventricular-like and atrial-like spontaneous APs and the response to prototypical current blockers, namely tetrodotoxine, nifedipine, E4041 and 3R4S-Chromanol 293B. Moreover, simulations using our ventricular-like model suggest that the interplay of immature I Na, I f and I K1 currents has a fundamental role in the hiPSC-CM spontaneous beating whereas a negative shift in I CaL activation causes the observed long lasting AP. In conclusion, this work provides two novel tools useful in investigating the electrophysiological features of hiPSC-CMs, whose importance is growing fast as in-vitro models for pharmacological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

AP:

Action potential

APA:

AP amplitude

APD:

AP duration

CaMK:

Ca2+/calmodulin-dependent protein kinase II

Chr:

3R4S-Chromanol 293B

CM:

Cardiomyocyte

EAD:

Early After Depolarization

hESC-CM:

Human embryonic stem cell-derived cardiomyocyte

hiPSC:

Human induced pluripotent stem cell

hiPSC-CM:

Human induced pluripotent stem cell-derived cardiomyocyte

iPSC:

Induced pluripotent stem cell

I/V :

Current/voltage

MDP:

Maximum diastolic potential

Nifed:

Nifedipine

V max :

Maximum upstroke velocity

ORd:

O’Hara-Rudy

Peak:

Peak voltage

rappAPD:

Action potential shape factor

SR:

Sarcoplasmic reticulum

TTX:

Tetrodotoxine

References

  1. Accili, E. A., C. Proenza, M. Baruscotti, and D. DiFrancesco. From funny current to HCN channels: 20 years of excitation. News Physiol. Sci. 17:32–37, 2002.

    PubMed  CAS  Google Scholar 

  2. Amos, G. J., E. Wettwer, F. Metzger, Q. Li, H. M. Himmel, and U. Ravens. Differences between outward currents of human atrial and subepicardial ventricular myocytes. J. Physiol. (Lond.) 491(Pt 1):31–50, 1996.

    CAS  Google Scholar 

  3. Beaumont, J., F. A. Roberge, and D. R. Lemieux. Estimation of the steady-state characteristics of the Hodgkin–Huxley model from voltage-clamp data. Math. Biosci. 115:145–186, 1993.

    Article  PubMed  CAS  Google Scholar 

  4. Camara, A. K., Z. Begic, W. M. Kwok, and Z. J. Bosnjak. Differential modulation of the cardiac L- and T-type calcium channel currents by isoflurane. Anesthesiology 95:515–524, 2001.

    Article  PubMed  CAS  Google Scholar 

  5. Carro, J., J. Rodriguez, P. Laguna, and E. Pueyo. A human ventricular cell model for investigation of cardiac arrhythmias under hyperkalaemic conditions. Philos. Trans. A: Math. Phys. Eng. Sci. 369:4205–4232, 2011.

    Article  CAS  Google Scholar 

  6. Faber, G. M., and Y. Rudy. Action potential and contractility changes in [Na+]i overloaded cardiac myocytes: a simulation study. Biophys. J. 78:2392–2404, 2008.

    Article  Google Scholar 

  7. Gerlach, A. C., S. J. Stoehr, and N. A. Castle. Pharmacological removal of human ether-à-go–go-related gene potassium channel inactivation by 3-nitro-N-(4-phenoxyphenyl) benzamide (ICA-105574). Mol. Pharmacol. 77:58–68, 2010.

    Article  PubMed  CAS  Google Scholar 

  8. Grandi, E., S. Pandit, N. Voigt, A. Workman, D. Dobrev, J. Jalife, and D. Bers. Human atrial action potential and Ca2+ model: sinus rhythm and chronic atrial fibrillation. Circ. Res. 109:1055–1066, 2011.

    Article  PubMed  CAS  Google Scholar 

  9. Grandi, E., F. S. Pasqualini, and D. M. Bers. A novel computational model of the human ventricular action potential and Ca transient. J. Mol. Cell. Cardiol. 48:112–121, 2010.

    Article  PubMed  CAS  Google Scholar 

  10. Grandi, E., F. S. Pasqualini, C. Pes, C. Corsi, A. Zaza, and S. Severi. Theoretical investigation of action potential duration dependence on extracellular Ca2+ in human cardiomyocytes. J Mol Cell Cardiol 46:332–342, 2009.

    Article  PubMed  CAS  Google Scholar 

  11. Hatano, S., T. Yamashita, A. Sekiguchi, Y. Iwasaki, K. Nakazawa, K. Sagara, H. Iinuma, T. Aizawa, and L.-T. Fu. Molecular and electrophysiological differences in the L-type Ca2+ channel of the atrium and ventricle of rat hearts. Circ. J. 70:610–614, 2006.

    Article  PubMed  CAS  Google Scholar 

  12. Hund, T. J., and Y. Rudy. Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model. Circulation 110:3168–3174, 2004.

    Article  PubMed  CAS  Google Scholar 

  13. Kehat, I., A. Gepstein, A. Spira, J. Itskovitz-Eldor, and L. Gepstein. High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes: a novel in vitro model for the study of conduction. Circ. Res. 91:659–661, 2002.

    Article  PubMed  CAS  Google Scholar 

  14. Lahti, A. L., V. J. Kujala, H. Chapman, A.-P. Koivisto, M. Pekkanen-Mattila, E. Kerkela, J. Hyttinen, K. Kontula, H. Swan, B. R. Conklin, S. Yamanaka, O. Silvennoinen, and K. Aalto-Setala. Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture. Dis. Model. Mech. 5:220–230, 2011.

    Article  PubMed  Google Scholar 

  15. Li, G., C. Lau, and A. Shrier. Heterogeneity of sodium current in atrial vs epicardial ventricular myocytes of adult guinea pig hearts. J. Mol. Cell. Cardiol. 34:1185–1194, 2002.

    Article  PubMed  CAS  Google Scholar 

  16. Ma, J., L. Guo, S. Fiene, B. Anson, J. Thomson, T. Kamp, K. Kolaja, B. Swanson, and C. January. High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am. J. Physiol. Heart Circ. Physiol. 301:H2006–H2017, 2011.

    Article  PubMed  CAS  Google Scholar 

  17. Maltsev, V. A., and E. G. Lakatta. Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model. Am. J. Physiol. Heart Circ. Physiol. 296:H594–H615, 2009.

    Article  PubMed  CAS  Google Scholar 

  18. Matsa, E., D. Rajamohan, E. Dick, L. Young, I. Mellor, A. Staniforth, and C. Denning. Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. Eur. Heart J. 32:952–962, 2011.

    Article  PubMed  CAS  Google Scholar 

  19. Moretti, A., M. Bellin, A. Welling, C. B. Jung, J. T. Lam, L. Bott-Flügel, T. Dorn, A. Goedel, C. Höhnke, F. Hofmann, M. Seyfarth, D. Sinnecker, A. Schömig, and K.-L. Laugwitz. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N. Engl. J. Med. 363:1397–1409, 2010.

    Article  PubMed  CAS  Google Scholar 

  20. O’hara, T., L. Virág, A. Varró, and Y. Rudy. Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput. Biol. 7:e1002061, 2011.

    Article  PubMed  Google Scholar 

  21. Paci, M., L. Sartiani, M. Lungo, M. Jaconi, A. Mugelli, E. Cerbai, and S. Severi. Mathematical modelling of the action potential of human embryonic stem cell derived cardiomyocytes. Biomed. Eng. Online 11:61, 2012.

    Article  PubMed  Google Scholar 

  22. Sanguinetti, M. C., and N. K. Jurkiewicz. Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J. Gen. Physiol. 96:195–215, 1990.

    Article  PubMed  CAS  Google Scholar 

  23. Sartiani, L., E. Bettiol, F. Stillitano, A. Mugelli, E. Cerbai, and M. E. Jaconi. Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach. Stem Cells 25:1136–1144, 2007.

    Article  PubMed  CAS  Google Scholar 

  24. Satoh, H., L. M. D. Delbridge, L. A. Blatter, and D. M. Bers. Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects. Biophys. J. 70:1494–1504, 1996.

    Article  PubMed  CAS  Google Scholar 

  25. Schram, G., M. Pourrier, P. Melnyk, and S. Nattel. Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ. Res. 90:939–950, 2002.

    Article  PubMed  CAS  Google Scholar 

  26. Shannon, T., F. Wang, J. Puglisi, C. Weber, and D. M. Bers. A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. Biophys. J. 87:3351–3371, 2004.

    Article  PubMed  CAS  Google Scholar 

  27. Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872, 2007.

    Article  PubMed  CAS  Google Scholar 

  28. Ten Tusscher, K. H. W. J., D. Noble, P. J. Noble, and A. V. Panfilov. A model for human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 286:H1573–H1589, 2004.

    Article  PubMed  Google Scholar 

  29. Ten Tusscher, K. H. W. J., and A. V. Panfilov. Alternans and spiral breakup in a human ventricular tissue model. Am. J. Physiol. Heart Circ. Physiol. 291:H1088–H1100, 2006.

    Article  PubMed  Google Scholar 

  30. Wang, J., R. H. G. Schwinger, K. Frank, J. Müller-ehmsen, P. Martin-vasallo, T. A. Pressley, A. Xiang, E. Erdmann, and A. A. Mcdonough. Regional expression of sodium pump subunit isoforms and Na+–Ca2+ exchanger in the human heart. J. Clin. Invest. 98:1650–1658, 1996.

    Article  PubMed  CAS  Google Scholar 

  31. Yazawa, M., B. Hsueh, X. Jia, A. M. Pasca, J. A. Bernstein, J. Hallmayer, and R. E. Dolmetsch. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471:230–234, 2011.

    Article  PubMed  CAS  Google Scholar 

  32. Yokoo, N., S. Baba, S. Kaichi, A. Niwa, T. Mima, H. Doi, S. Yamanaka, T. Nakahata, and T. Heike. The effects of cardioactive drugs on cardiomyocytes derived from human induced pluripotent stem cells. Biochem. Biophys. Res. Commun. 387:482–488, 2009.

    Article  PubMed  CAS  Google Scholar 

  33. Yu, J., M. A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J. L. Frane, S. Tian, J. Nie, G. A. Jonsdottir, V. Ruotti, R. Stewart, I. I. Slukvin, and J. A. Thomson. Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920, 2007.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang, H., B. Zou, H. Yu, A. Moretti, X. Wang, W. Yan, J. J. Babcock, M. Bellin, O. B. McManus, G. Tomaselli, F. Nan, K. L. Lauqwitz, and M. Li. Modulation of hERG potassium channel gating normalizes action potential duration prolonged by dysfunctional KCNQ1 potassium channel. Proc. Natl. Acad. Sci. U.S.A. 109:11866–11871, 2012.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang, J., G. F. Wilson, A. G. Soerens, C. H. Koonce, J. Yu, S. P. Palecek, J. A. Thomson, and T. J. Kamp. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res. 104:e30–e41, 2009.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors confirm that this article content has no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Severi.

Additional information

Associate Editor Scott I Simon oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 169 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paci, M., Hyttinen, J., Aalto-Setälä, K. et al. Computational Models of Ventricular- and Atrial-Like Human Induced Pluripotent Stem Cell Derived Cardiomyocytes. Ann Biomed Eng 41, 2334–2348 (2013). https://doi.org/10.1007/s10439-013-0833-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0833-3

Keywords

Navigation