Skip to main content
Log in

Low Strength Static Magnetic Field Inhibits the Proliferation, Migration, and Adhesion of Human Vascular Smooth Muscle Cells in a Restenosis Model Through Mediating Integrins β1-FAK, Ca2+ Signaling Pathway

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 27 December 2012

Abstract

The proliferation, migration, and adhesion of vascular smooth muscle cells (VSMCs) and their interactions with extracellular matrix are key features of atherosclerosis and restenosis. Recently, there has been evidence that magnetic fields exert multiple effects on the biological performance of cells and may aid in the treatment of vascular disease. However, the effect of a static magnetic field (SMF) on human VSMCs still remains unknown. In this study, we aimed to determine the effects of low strength SMF on human VSMCs in an in vitro restenosis model. A SMF was established using neodymium–yttrium–iron permanent magnet. Human umbilical artery smooth muscle cells (hUASMCs) were isolated and seeded to a fibronectin-coated plate to form an in vitro restenosis model and then exposed to a vertically oriented field of 5 militesla (mT). MTT, transwell, and adhesion assays were used to demonstrate that the proliferation, migration, and adhesion potential of hUASMCs were significantly decreased after exposure to 5 mT SMF for 48 h compared with a non-treated group. Meanwhile, confocal microscopy analysis was used to demonstrate that integrin β1 clustering was inhibited by exposure to 5 mT SMF. Furthermore, the phosphorylation of focal adhesion kinase (FAK) was markedly inhibited, and the upregulated cytosolic free calcium had been reversed (p < 0.05). However, the biological effects of low strength SMF on hUASMCs could be blocked by the administration of GRGDSP—the blockade of integrins. In conclusion, a low strength SMF can influence the proliferation, migration, and adhesion of VSMCs by inhibiting the clustering of integrin β1, decreasing cytosolic free calcium concentration, and inactivating FAK. With further validation, SMFs may aid in attenuating abnormal VSMCs biological performance and has potential to block atherogenesis and prevent restenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Amara, S., et al. Influence of a static magnetic field (250 mT) on the antioxidant response and DNA integrity in THP1 cells. Phys. Med. Biol. 52:889–898, 2007.

    Article  PubMed  CAS  Google Scholar 

  2. Belton, M., K. Commerford, J. Hall, F. Prato, and J. J. L. Carson. Real-time measurement of cytosolic free calcium concentration in HL-60 cells during static magnetic field exposure and activation by ATP. Bioelectromagnetics 29:439–446, 2008.

    Article  PubMed  CAS  Google Scholar 

  3. Bernard-Trifilo, J. A., S. T. Lim, S. Hou, D. D. Schlaepfer, and D. Ilic. Analyzing FAK and Pyk2 in early integrin signaling events. Curr. Protoc. Cell Biol. Chapter 14, Unit 14.7, 2006.

  4. Brakebusch, C., and R. Fassler. The integrin–actin connection, an eternal love affair. EMBO J22:2324–2333, 2003.

    Google Scholar 

  5. Cinteza, D. Update in physical medicine and rehabilitation: new technologies and robots versus classical training in gait rehabilitation after stroke. Maedica (Buchar) 6:160–161, 2011.

    Google Scholar 

  6. Coppolino, M. G., et al. Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. Nature 386:843–847, 1997.

    Article  PubMed  CAS  Google Scholar 

  7. Correa, R. M., et al. Mitochondrial involvement in carbachol-induced intracellular Ca2+ mobilization and contraction in rat gastric smooth muscle. Life Sci. 89:757–764, 2011.

    Article  PubMed  CAS  Google Scholar 

  8. Dzau, V. J., R. C. Braun-Dullaeus, and D. G. Sedding. Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat. Med. 8:1249–1256, 2002.

    Article  PubMed  CAS  Google Scholar 

  9. Gerthoffer, W. T. Mechanisms of vascular smooth muscle cell migration. Circ. Res. 100:607–621, 2007. doi:10.1161/01.res.0000258492.96097.47.

    Article  PubMed  CAS  Google Scholar 

  10. Gordon, R. T., J. R. Hines, and D. Gordon. Intracellular hyperthermia a biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Med. Hypotheses 5:83–102, 1979.

    Article  PubMed  CAS  Google Scholar 

  11. Huveneers, S., H. Truong, R. Fassler, A. Sonnenberg, and E. H. Danen. Binding of soluble fibronectin to integrin alpha 5 beta 1—link to focal adhesion redistribution and contractile shape. J. Cell Sci. 121:2452–2462, 2008. doi:10.1242/jcs.033001.

    Article  PubMed  CAS  Google Scholar 

  12. Huveneers, S., H. Truong, R. Fassler, A. Sonnenberg, and E. H. Danen. Binding of soluble fibronectin to integrin {alpha}5{beta}1—link to focal adhesion redistribution and contractile shape. J. Cell Sci. 121:2452–2462, 2008.

    Article  PubMed  CAS  Google Scholar 

  13. Isner, J. M., M. Kearney, S. Bortman, and J. Passeri. Apoptosis in human atherosclerosis and restenosis. Circulation 91:2703–2711, 1995. doi:10.1161/01.cir.91.11.2703.

    Article  PubMed  CAS  Google Scholar 

  14. Iwasaka, M., J. Miyakoshi, and S. Ueno. Magnetic field effects on assembly pattern of smooth muscle cells. In Vitro Cell. Dev. Biol. Anim. 39:120–123, 2003.

    PubMed  Google Scholar 

  15. Junji, M. Effects of static magnetic fields at the cellular level. Prog. Biophys. Mol. Biol. 87:213–223, 2005.

    Article  Google Scholar 

  16. Kobbert, C., et al. Low-energy electromagnetic fields promote proliferation of vascular smooth muscle cells. Electromagn. Biol. Med. 27:41–53, 2008.

    Article  PubMed  Google Scholar 

  17. Mahoney, W. M., and S. M. Schwartz. Defining smooth muscle cells and smooth muscle injury. J. Clin. Invest. 115:221–224, 2005.

    PubMed  CAS  Google Scholar 

  18. Miyamoto, S., S. K. Akiyama, and K. M. Yamada. Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science 267:883–885, 1995.

    Article  PubMed  CAS  Google Scholar 

  19. Muehsam, D., and A. Pilla. A Lorentz model for weak magnetic field bioeffects: part I—thermal noise is an essential component of AC/DC effects on bound ion trajectory. Bioelectromagnetics 30:462–475, 2009.

    Article  PubMed  Google Scholar 

  20. Muehsam, D., and A. Pilla. A Lorentz model for weak magnetic field bioeffects: part II—secondary transduction mechanisms and measures of reactivity. Bioelectromagnetics 30:476–488, 2009.

    Article  PubMed  Google Scholar 

  21. Natarajan, R. Drugs targeting epigenetic histone acetylation in vascular smooth muscle cells for restenosis and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 31:725–727, 2011. doi:10.1161/atvbaha.111.222976.

    Article  PubMed  CAS  Google Scholar 

  22. Owens, G. K., M. S. Kumar, and B. R. Wamhoff. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 84:767–801, 2004.

    Article  PubMed  CAS  Google Scholar 

  23. Polidori, E., et al. Gene expression profile in cultured human umbilical vein endothelial cells exposed to a 300 mT static magnetic field. Bioelectromagnetics 33:65–74, 2012. doi:10.1002/bem.20686.

    Article  PubMed  CAS  Google Scholar 

  24. Potenza, L., et al. Effects of a 300 mT static magnetic field on human umbilical vein endothelial cells. Bioelectromagnetics 31:630–639, 2010. doi:10.1002/bem.20591.

    Article  PubMed  CAS  Google Scholar 

  25. Ross, J. J., and R. T. Tranquillo. ECM gene expression correlates with in vitro tissue growth and development in fibrin gel remodeled by neonatal smooth muscle cells. Matrix Biol. 22:477–490, 2003.

    Article  PubMed  CAS  Google Scholar 

  26. Samra, H. S., and F. He. Advancements in high throughput biophysical technologies: applications for characterization and screening during early formulation development of monoclonal antibodies. Mol. Pharm. 9:696–707, 2012. doi:10.1021/mp200404c.

    Article  PubMed  CAS  Google Scholar 

  27. Schwaiberger, A., et al. Indirubin-3′-monoxime blocks vascular smooth muscle cell proliferation by inhibition of signal transducer and activator of transcription 3 signaling and reduces neointima formation in vivo. Arterioscler. Thromb. Vasc. Biol. 30:2475–2481, 2010.

    Article  PubMed  CAS  Google Scholar 

  28. Sieg, D. J., C. R. Hauck, and D. D. Schlaepfer. Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. J. Cell Sci. 112:2677–2691, 1999.

    PubMed  CAS  Google Scholar 

  29. Smyth, S. S., C. C. Joneckis, and L. V. Parise. Regulation of vascular integrins. Blood 81:2827–2843, 1993.

    PubMed  CAS  Google Scholar 

  30. Song, G. J., et al. The scaffolding protein EBP50 promotes vascular smooth muscle cell proliferation and neointima formation by regulating Skp2 and p21cip1. Arterioscler. Thromb. Vasc. Biol. 32:33–41, 2012. doi:10.1161/atvbaha.111.235200.

    Article  PubMed  CAS  Google Scholar 

  31. Sun, P., et al. Increase in cortical pyramidal cell excitability accompanies depression-like behavior in mice: a transcranial magnetic stimulation study. J. Neurosci. 31:16464–16472, 2011. doi:10.1523/jneurosci.1542-11.2011.

    Article  PubMed  CAS  Google Scholar 

  32. Thompson, P. D., et al. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 23:e42–e49, 2003. doi:10.1161/01.atv.0000089628.63625.d4.

    Article  Google Scholar 

  33. Uldry, L., V. Jacquemet, N. Virag, L. Kappenberger, and J.-M. Vesin. Estimating the time scale and anatomical location of atrial fibrillation spontaneous termination in a biophysical model. Med. Biol. Eng. Comput. 50:155–163, 2012. doi:10.1007/s11517-011-0859-3.

    Article  PubMed  Google Scholar 

  34. Ulrich-Merzenich, G., et al. Simultaneous isolation of endothelial and smooth muscle cells from human umbilical artery or vein and their growth response to low-density lipoproteins. In Vitro Cell. Dev. Biol. Anim. 38:265–272, 2002.

    Article  PubMed  Google Scholar 

  35. van Buul, J. D., et al. Leukocyte–endothelium interaction promotes SDF-1-dependent polarization of CXCR4. J. Biol. Chem. 278:30302–30310, 2003. doi:10.1074/jbc.M304764200.

    Article  PubMed  Google Scholar 

  36. Vicente-Manzanares, M., D. J. Webb, and A. R. Horwitz. Cell migration at a glance. J. Cell Sci. 118:4917–4919, 2005. doi:10.1242/jcs.02662.

    Article  PubMed  CAS  Google Scholar 

  37. Xie, M. J., L. F. Zhang, J. Ma, and H. W. Cheng. [Enhanced BK (Ca) single-channel activities in cerebrovascular smooth muscle cells of simulated microgravity rats.]. Sheng Li Xue Bao 57:439–445, 2005.

    PubMed  CAS  Google Scholar 

  38. Yeh, E. T. H., et al. Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation 108:2070–2073, 2003. doi:10.1161/01.cir.0000099501.52718.70.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Guangrong Zou (Institute of Permanent Magnets, North West University) for his great help in designing a SMF. We also thank Prof. Ruoslahti (La Jolla Cancer Research Foundation) for his generosity in providing antibodies. JY is supported by NSFC funding (81000141).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Li, Haichang Wang or Jin Yu.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Yan Li and Li-Qiang Song contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Song, LQ., Chen, M.Q. et al. Low Strength Static Magnetic Field Inhibits the Proliferation, Migration, and Adhesion of Human Vascular Smooth Muscle Cells in a Restenosis Model Through Mediating Integrins β1-FAK, Ca2+ Signaling Pathway. Ann Biomed Eng 40, 2611–2618 (2012). https://doi.org/10.1007/s10439-012-0602-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0602-8

Keywords

Navigation