Skip to main content

Advertisement

Log in

Quantitative Analysis of Molecular Absorption into PDMS Microfluidic Channels

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Microfluidic devices fabricated using poly(dimethylsiloxane) (PDMS) polymer are routinely used for in vitro cell culture for a wide range of cellular assays. These assays typically involve the incubation of cultured cells with a drug molecule or a fluorescent marker while monitoring a cellular response. The accuracy of these assays depends on achieving a consistent and reproducible concentration of solute molecules in solution. However, hydrophobic therapeutic and fluorescent molecules tend to diffuse into the PDMS walls of the microfluidic devices, which reduce their concentration in solution and consequently affect the accuracy and reliability of these assays. In this paper, we quantitatively investigate the relationship between the partition coefficient (log P) of a series of markers routinely used in in vitro cellular assays including [3H]-dexamethasone, [3H]-diazepam, [14C]-mannitol, [3H]-phenytoin, and rhodamine 6G and their absorption into PDMS microfluidic channels. Our results show that the absorption of a given solute into PDMS depends on the hydrophilic/hydrophobic balance defined by its log P value. Specifically, results demonstrate that molecules with log P less than 2.47 exhibit minimal absorption (<10%) into PDMS channels whereas molecules with log P larger than 2.62 exhibit extensive absorption (>90%) into PDMS channels. Further investigations showed that TiO2 and glass coatings of PDMS channels reduced the absorption of hydrophobic molecules (log P > 2.62) by 2- and 4.5-folds, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Abate, A. R., D. Lee, T. Do, C. Holtze, and D. A. Weitz. Glass coating for PDMS microfluidic channels by sol-gel methods. Lab Chip 8:516–518, 2008.

    Article  PubMed  CAS  Google Scholar 

  2. Baltes, S., A. M. Gastens, M. Fedrowitz, H. Potschka, V. Kaever, and W. Loscher. Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology 52:333–346, 2007.

    Article  PubMed  CAS  Google Scholar 

  3. Becker, H., and C. Gartner. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21(1):12–26, 2000.

    Article  PubMed  CAS  Google Scholar 

  4. Bereczki, A., A. Tolokan, G. Horvai, V. Horvath, F. Lanza, A. J. Hall, and B. Sellergren. Determination of phenytoin in plasma by molecularly imprinted solid-phase extraction. J. Chromatogr. A 930:31–38, 2001.

    Article  PubMed  CAS  Google Scholar 

  5. Bodas, D., and C. Khan-Malek. Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments. Microelectron. Eng. 83(4–9):1277–1279, 2006.

    Article  CAS  Google Scholar 

  6. Burns, M. A., B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke. An integrated nanoliter DNA analysis device. Science 282:484–487, 1998.

    Article  PubMed  CAS  Google Scholar 

  7. Cheng, J., M. A. Shoffner, G. E. Hvichia, L. J. Kricka, and P. Wilding. Chip PCR. II. Investigation of different PCR amplification systems in microfabricated silicon-glass chips. Nucleic Acids Res. 24(2):380–385, 1996.

    Article  PubMed  CAS  Google Scholar 

  8. Cheng, J., M. A. Shoffner, K. R. Mitchelson, L. J. Kricka, and P. Wilding. Analysis of ligase chain reaction products amplified in a silicon-glass chip using capillary electrophoresis. J. Chromatogr. A 732(1):151–158, 1996.

    Article  PubMed  CAS  Google Scholar 

  9. Cheng, J., L. C. Waters, P. Fortina, G. Hvichia, S. C. Jacobson, J. M. Ramsey, L. J. Kricka, and P. Wilding. Degenerate oligonucleotide rpimed-PCR and capillary electrophoretic analysis of human DNA on microchip-based devices. Anal. Biochem. 257:101–106, 1998.

    Article  PubMed  CAS  Google Scholar 

  10. Cheruvu, N. P. S., S. P. Ayalasomayajula, and U. B. Kompella. Retinal delivery of sodium fluorescein, budesonide & celecoxib following subconjunctival injection. Drug Dev. Deliv. 3(6), 2003.

  11. Chou, H. P., C. Spence, A. Scherer, and S. Quake. A microfabricated device for sizing and sorting DNA molecules. Proc. Natl. Acad. Sci. USA 96(1):11–13, 1999.

    Article  PubMed  CAS  Google Scholar 

  12. Collett, A., N. B. Higgs, E. Sims, M. Rowland, and G. Warhurst. Modulation of the permeability of H2 receptor antagonists cimetidine and ranitidine by P-glycoprotein in rat intestine and the human colonic cell line caco-2. J. Pharmacol. Exp. Ther. 288(1):171–178, 1999.

    PubMed  CAS  Google Scholar 

  13. Cox, M. E., and B. Dunn. Oxygen diffusion in poly(dimethyl siloxane) using fluorescence quenching. I. Measurement technique and analysis. J. Polym. Sci. A 24:621–636, 1986.

    Article  CAS  Google Scholar 

  14. de Jong, J., R. G. H. Lammertink, and M. Wessling. Membranes and microfluidics: a review. Lab Chip 6:1125–1139, 2006.

    Article  PubMed  CAS  Google Scholar 

  15. Deli, M. A., C. S. Abraham, Y. Kataoka, and M. Niwa. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell. Mol. Neurobiol. 25(1):59–127, 2004.

    Article  Google Scholar 

  16. Dörre, K., S. Brakmann, M. Brinkmeier, K. T. Han, K. Riebeseel, P. Schwille, J. Stephan, T. Wetzel, M. Lapczyna, M. Stuke, R. Bader, M. Hinz, H. Seliger, J. Holm, M. Eigen, and R. Rigler. Techniques for single molecule sequencing. Bioimaging 5:139–152, 1997.

    Article  Google Scholar 

  17. Duffy, D. C., J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70:4974–4984, 1998.

    Article  PubMed  CAS  Google Scholar 

  18. Eddington, D. T., J. P. Puccinelli, and D. J. Beebe. Thermal aging and reduced hydrophobic recovery of polydimethylsiloxane. Sens. Actuators B 114:170–172, 2006.

    Article  Google Scholar 

  19. Effenhauser, C. S., G. J. M. Bruin, A. Paulus, and M. Ehrat. Integrated capillary electrophoresis on flexible silicone microdevices: analysis of DNA restriction fragments and detection of single DNA molecules on microchips. Anal. Chem. 69(17):3451–3457, 1997.

    Article  PubMed  CAS  Google Scholar 

  20. Effenhauser, C. S., A. Manz, and H. M. Widmer. Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights. Anal. Chem. 65(19):2637–2642, 1993.

    Article  CAS  Google Scholar 

  21. Emsley, J. Very strong hydrogen bonds. Chem. Soc. Rev. 9:91–124, 1980.

    Article  CAS  Google Scholar 

  22. Fan, Z. H., and D. J. Harrison. Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections. Anal. Chem. 66(1):177–184, 1994.

    Article  CAS  Google Scholar 

  23. Fiddes, L. K., N. Raz, S. Srigunapalan, E. Tumarkan, and C. A. Simmons. A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions. Biomaterials 31:3459–3464, 2010.

    Article  PubMed  CAS  Google Scholar 

  24. Fowler, S. D., and P. Greenspan. Application of Nile red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: comparison with oil red o. J. Histochem. Cytochem. 33(8):833–836, 1985.

    Article  PubMed  CAS  Google Scholar 

  25. Han, J.-H., and J.-Y. Yoon. Reusable, polyethylene glycol-structured microfluidic channel for particle immunoassays. J. Biol. Eng. 3:6, 2009.

    Article  PubMed  Google Scholar 

  26. Hansch, C., P. G. Sammes, and J. B. Taylor. Comprehensive Medicinal Chemistry: The Rational Design, Mechanistic Study & Therapeutic Applications of Chemical Compounds, Vol. 6. Oxford: Pergamon Press, 1990.

    Google Scholar 

  27. Hardman, J. G., L. E. Limbird, and A. G. Gilman. Goodman & Gilman’s the Pharmacological Basis of Therapeutics (10th ed.). New York: McGraw-Hill, 2001.

    Google Scholar 

  28. Harrison, D. J., A. Manz, Z. Fan, H. Ludi, and H. M. Widmer. Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal. Chem. 64(17):1926–1932, 1992.

    Article  CAS  Google Scholar 

  29. Huh, D., H. Fujioka, Y.-C. Tung, N. Futai, R. Paine, III, J. B. Grotberg, and S. Takayama. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc. Natl. Acad. Sci. USA 104(48):18886–18891, 2007.

    Article  PubMed  CAS  Google Scholar 

  30. Huszank, R., S. Z. Szilasi, I. Rajta, and A. Csik. Fabrication of optical devices in poly(dimethylsiloxane) by proton microbeam. Opt. Commun. 283(1):176–180, 2009.

    Article  Google Scholar 

  31. Kittel, C., and H. Kroemer. Thermal Physics (2nd ed.). San Francisco: W.H. Freeman Company, 1980.

    Google Scholar 

  32. Ko, J. S., H. C. Yoon, H. Yang, H.-B. Pyo, K. H. Chung, S. J. Kim, and Y. T. Kim. A polymer-based microfluidic device for immunosensing biochips. Lab Chip 3(2):106–113, 2003.

    Article  CAS  Google Scholar 

  33. Kopp, M. U., A. J. de Mello, and A. Manz. Chemical amplification: continuous-flow PCR on a chip. Science 280(5366):1046–1048, 1998.

    Article  PubMed  CAS  Google Scholar 

  34. Kuchler, S., M. Abdel-Mottaleb, A. Lamprecht, M. R. Radowski, R. Haag, and M. Schafer-Korting. Influence of nanocarrier type and size on skin delivery of hydrophilic agents. Int. J. Pharm. 377:169–172, 2009.

    Article  PubMed  Google Scholar 

  35. Lee, J. N., C. Park, and G. M. Whitesides. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75:6544–6554, 2003.

    Article  PubMed  CAS  Google Scholar 

  36. Leo, A., C. Hansch, and D. Elkins. Partition coefficients and their uses. Chem. Rev. 71(6):525–616, 1971.

    Article  CAS  Google Scholar 

  37. Li, M., and D. P. Kim. Silicate glass coated microchannels through a phase conversion process for glass-like electrokinetic performance. Lab Chip 11:1126–1131, 2011.

    Article  PubMed  CAS  Google Scholar 

  38. Lima, R., S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K.-i. Tsubota, Y. Imai, and T. Yamaguchi. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Biomed. Microdevices 10:153–167, 2008.

    Article  PubMed  Google Scholar 

  39. Lipinski, C. A., F. Lombardo, B. W. Dominy, and P. J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46:3–26, 2001.

    Article  PubMed  CAS  Google Scholar 

  40. Liu, S., Y. Shi, W. W. Ja, and R. A. Mathies. Optimization of high-speed DNA sequencing on microfabricated capillary electrophoresis channels. Anal. Chem. 71:566–573, 1999.

    Article  PubMed  CAS  Google Scholar 

  41. Mandala, M., G. Serck-Hanssen, G. Martino, and K. B. Helle. The fluorescent cationic dye rhodamine 6G as a probe for membrane potential in bovine aortic endothelial cells. Anal. Biochem. 274:1–6, 1998.

    Article  Google Scholar 

  42. Mandrioli, R., L. Mercolini, and M. A. Raggi. Benzodiazepine metabolism: an analytical perspective. Curr. Drug Metab. 9(8):827–844, 2008.

    Article  PubMed  CAS  Google Scholar 

  43. Markovitch, O., and N. Agmon. Structure and energetics of the hydronium hydration shells. J. Phys. Chem. A 111(12):2253–2256, 2007.

    Article  PubMed  CAS  Google Scholar 

  44. McDonald, J. C., D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40, 2000.

    Article  PubMed  CAS  Google Scholar 

  45. Millet, L. J., M. E. Stewart, J. V. Sweedler, R. G. Nuzzo, and M. U. Gillette. Microfluidic devices for culturing primary mammalian neurons at low densities. Lab Chip 7:987–994, 2007.

    Article  PubMed  CAS  Google Scholar 

  46. Neuhaus, W., V. E. Plattner, M. Wirth, B. Germann, B. Lachmann, F. Gabor, and C. R. Noe. Validation of in vitro cell culture models of the blood-brain barrier: tightness characterization of two promising cell lines. J. Pharm. Sci. 97(12):5158–5175, 2008.

    Article  PubMed  CAS  Google Scholar 

  47. Northrup, M. A., B. Benett, D. Hadley, P. Landre, S. Lehew, J. Richards, and P. Stratton. A miniature analytical instrument for nucleic acids based on micromachined silicon reaction chambers. Anal. Chem. 70:912–922, 1998.

    Article  Google Scholar 

  48. Paturi, J., H. D. Kim, B. Chakraborty, P. M. Friden, and A. K. Banga. Transdermal and intradermal iontophoretic delivery of dexamethasone sodium phosphate: quantification of the drug localized in skin. J. Drug Target. 18(2):134–140, 2010.

    Article  PubMed  CAS  Google Scholar 

  49. Prakash, A. R., S. Adamia, V. Sieben, P. Pilarski, L. M. Pilarski, and C. J. Backhouse. Small volume PCR in PDMS biochips with integrated fluid control and vapour barrier. Sens. Actuators B 113:398–409, 2006.

    Article  Google Scholar 

  50. Proudfoot, J. R. The evolution of synthetic oral drug properties. Bioorg. Med. Chem. Lett. 15(4):1087–1090, 2005.

    Article  PubMed  CAS  Google Scholar 

  51. Rebenklau, L., K.-J. Wolter, and S. Howitz. Realization of hybrid microfluidic systems using standard LTCC process. In: Electronic Components and Technology Conference. Las Vages, NV, 2000.

  52. Roman, G. T., and C. T. Culbertson. Surface engineering of poly(dimethylsiloxane) microfluidic devices using transition metal sol-gel chemistry. Langmuir 22:4445–4451, 2006.

    Article  PubMed  CAS  Google Scholar 

  53. Schmelzeisen, R., and J.-C. Frolich. Prevention of postoperative swelling and pain by dexamethasone after operative removal of impacted third molar teeth. Eur. J. Clin. Pharmacol. 44:275–277, 1993.

    Article  PubMed  CAS  Google Scholar 

  54. Seiler, K., D. J. Harrison, and A. Manz. Planar glass chips for capillary electrophoresis: repetitive sample injection, quantitation, and separation efficiency. Anal. Chem. 65(10):1481–1488, 1993.

    Article  CAS  Google Scholar 

  55. Shoffner, M. A., J. Cheng, G. E. Hvichia, L. J. Kricka, and P. Wilding. Chip PCR. I. Surface passivation of microfabricated silicon-glass chips for PCR. Nucleic Acids Res. 24(2):375–379, 1996.

    Article  PubMed  CAS  Google Scholar 

  56. Simpson, P. C., D. Roach, A. T. Woolley, T. Thorsen, R. Johnston, G. F. Sensabaugh, and R. A. Mathies. High-throughput genetic analysis using microfabricated 96-sample capillary array electrophoresis microplates. Proc. Natl. Acad. Sci. USA 95(5):2256–2261, 1998.

    Article  PubMed  CAS  Google Scholar 

  57. Sodunke, T. R., M. J. Bouchard, and H. M. Noh. Microfluidic platform for hepatitis B viral replication study. Biomed. Microdevices 10(3):393–402, 2007.

    Article  Google Scholar 

  58. Sohn, L. L., O. A. Saleh, G. R. Facer, A. J. Beavis, R. S. Allan, and D. A. Notterman. Capacitance cytometry: measuring biological cells one by one. Proc. Natl. Acad. Sci. USA 97(20):10687–10690, 2000.

    Article  PubMed  CAS  Google Scholar 

  59. Tetko, I. V., J. Gasteiger, R. Todeschini, A. Mauri, D. Livingstone, P. Ertl, V. A. Palyulin, E. V. Radchenko, N. S. Zefirov, A. S. Makarenko, V. Y. Tanchuk, and V. V. Prokopenko. Virtual computational chemistry laboratory—design and description. J. Comput. Aided Mol. Des. 19:453–463, 2005.

    Article  PubMed  CAS  Google Scholar 

  60. Thangawng, A. L., R. S. Ruoff, M. A. Swartz, and M. R. Glucksberg. An ultra-thin PDMS membrane as a bio/micro-nano interface: fabrication and characterization. Biomed. Microdevices 9(4):587–595, 2007.

    Article  PubMed  CAS  Google Scholar 

  61. Toepke, M. W., and D. J. Beebe. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6:1484–1486, 2006.

    Article  PubMed  CAS  Google Scholar 

  62. Tung, Y.-C., Y.-s. Torisawa, N. Futai, and S. Takayama. Small volume low mechanical stress cytometry using computer-controlled Braille display microfluidics. Lab Chip 7:1497–1503, 2007.

    Article  PubMed  CAS  Google Scholar 

  63. Ueda, K., N. Okamura, M. Hirai, Y. Tanigawara, T. Saeki, N. Kioka, T. Komano, and R. Hori. Human p-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J. Biol. Chem. 267(34):24248–24252, 1992.

    PubMed  CAS  Google Scholar 

  64. Upadhyaya, S., and P. R. Selvaganapathy. Microfluidic devices for cell based high throughput screening. Lab Chip 10:341–348, 2010.

    Article  PubMed  CAS  Google Scholar 

  65. Vickers, J. A., M. M. Caulum, and C. S. Henry. Generation of hydrophilic poly(dimethylsiloxane) for high-performance microchip electrophoresis. Anal. Chem. 78:7446–7452, 2006.

    Article  PubMed  CAS  Google Scholar 

  66. Waters, L. C., S. C. Jacboson, N. Kroutchinina, Y. Khandurina, R. S. Foote, and J. M. Ramsey. Multiple sample PCR amplification and electrophoretic analysis on a microchip. Anal. Chem. 70:5172, 1998.

    Article  PubMed  CAS  Google Scholar 

  67. Woolley, A. T., and R. A. Mathies. Ultra-high-speed DNA sequencing using capillary electrophoresis chips. Anal. Chem. 67:3676–3680, 1995.

    Article  PubMed  CAS  Google Scholar 

  68. Yang, H.-w., H.-y. Liu, D.-m. Zhang, Y.-c. Liu, X.-d. Liu, G.-j. Wang, and L. Xie. Increased P-glycoprotein function and level after long-term exposure of four antiepileptic drugs to rat brain microvascular endothelial cells in vitro. Neurosci. Lett. 434(3):299–303, 2008.

    Article  PubMed  CAS  Google Scholar 

  69. Zhang, J., K. L. Tan, G. D. Hong, L. J. Yang, and H. Q. Gong. Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS. J. Micromech. Microeng. 11(1):20–26, 2001.

    Article  CAS  Google Scholar 

  70. Zhou, J., A. V. Ellis, and N. H. Voelcker. Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 31:2–16, 2010.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed ElSayed.

Additional information

Associate Editor Sriram Neelamegham oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J.D., Douville, N.J., Takayama, S. et al. Quantitative Analysis of Molecular Absorption into PDMS Microfluidic Channels. Ann Biomed Eng 40, 1862–1873 (2012). https://doi.org/10.1007/s10439-012-0562-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0562-z

Keywords

Navigation